高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
聚偏氟乙烯基电极材料及其超级电容器的制备方法
本发明涉及一种聚偏氟乙烯基扣式与卷绕式超级电容器及其电极材料制备方法。该方法包括:(1)聚偏氟乙烯混合液制备;(2)聚偏氟乙烯复合膜制备;(3)对复合膜活化处理,制得扣式与卷绕式超级电容器的聚偏氟乙烯膜电极材料。以聚偏氟乙烯膜材料为扣式与卷绕式超级电容器的电极,制备成扣式超级电容器与卷绕式超级电容器。本发明制备的电极材料,不用直接添加活性物质,其成本低、充放电速度快、工艺简单;制备的扣式与卷绕式超级电容器充放电性能好、循环寿命长;且电极材料可加工为任意大小,其厚度大约为85~120μm,符合器件小型化的要求及扩大其应用范围。
四川大学 2021-04-11
可生物降解的生物活性掺锶硫酸钙材料、制备方法及应用
本发明公开了一种可生物降解的生物活性掺锶硫酸钙材料、制备方法及应用。其制备方法是将含Ca2+和Sr2+的溶液与十二烷基磺酸钠溶液混合,再将该混合溶液滴加到持续超声和搅拌处理的含SO42-的无机盐溶液中,析出掺锶二水硫酸钙微粒,经过滤、洗涤、干燥后,在150~170oC热处理后转化为掺锶α-半水硫酸钙微粒,再按固/液比0.5~2.0的比例将掺锶α-半水硫酸钙微粒与生理盐水调和形成糊状物,经水化反应并固化形成的材料。这种材料在骨损伤中持续降解并释放钙、锶和硫酸根离子,适宜于各种人体骨齿损伤修复、药物缓释等应用。本发明具有制备工艺简单、微粒形貌和尺寸容易控制、锶摻杂比例易于操控等特点。
浙江大学 2021-04-11
面向应用的高效有机太阳能电池关键材料与器件制备研究
作为一种新的太阳能电池电池技术,有机太阳能电池具有低成本、柔性、半透明、可大面积溶液印刷等优点;在应用方面,可与当前基于硅等的无机太阳能电池形成优势互补。特别指出的是,与钙钛矿太阳能电池相比,有机太阳能电池还具有环境友好的优点,在使用过程中以及使用后处理方面不会产生重金属污染,其所使用的少量有机材料都是可降解的有机染料类化合物。效率、成本和稳定性是所以太阳能电池能否应用的关键要素。有机太阳能的效率目前和其它最好的太阳能电池之间的差距正在迅速缩小,目前我们实验室已经获得超过 1515%的效率,是有机太阳能电池领域世界最高效率;成本方面,OPV具有巨大优势,有机材料分子结构多样性,成本低廉;寿命方面,因成本低廉,产业界对有机太阳能电池寿命的要求不如无机太阳能电池,10 年左右的寿命可以完全满足商业化应用,已有研究表明,OPV 寿命达到 5-7 年没有问题,随着研究深入,提高的 10 年以上会很快实现。 本项目围绕有机太阳能电池的关键材料开展系统研究,1)提出了新的材料设计理念,发展了系列具有独立自主知识产权的活性层材料;2)发展了成熟的高效率有机太阳能电池制备工艺技术,制备了系列高效率有机太阳能电池光伏器件,不断刷新领域内最高太阳能电池光电转化效率;3)制备了低成本、可溶液印刷柔性的透明电极,应用于有机太阳能电池,获得了与目前常规透明电极,如 ITO,完全相当性能。
南开大学 2021-02-01
用于制备金属软磁复合材料的绝缘粘结剂及其使用方法
本发明公开一种用于制备金属软磁复合材料的绝缘粘结剂及其使用方法。本发明绝缘粘结剂是一种纳米改性有机硅树脂绝缘粘结剂,成分由有机硅树脂和无机纳米分散液组成。该绝缘粘结剂大幅度提高了有机硅树脂的耐热温度,提高了磁粉芯的力学强度,成分选择合理使用效果好,对铁基、镍基和其他成分的金属软磁磁粉都有很好的绝缘粘结效果。采用本发明提供的绝缘粘结剂所制备的磁粉芯具有综合的优良磁性能和力学性能。
浙江大学 2021-04-11
牵伸分散纳米粒子技术及其在聚合物复合材料中的应用
本技术成果涉及纳米材料及其在聚合物中应用 的关键技术研究,属于新材料高新技术领域。针对 纳米粒子难以在聚合物中均匀分散的难题,将材料 结构设计和熔融共混工艺相结合,创新性地提出运 用加工手段诱导纳米粒子在塑料成型加工时分散的 技术。采用纳米粒子接枝改性、双重界面调控、预 牵伸等,通过改变加工条件和加工手段达到强制分 隔纳米粒子团聚体、实现纳米分散结构的目的。制备具有显著增强增韧效果的纳米无机粒子填充聚合物复 合材料,实现通用塑料工程化。本成果的技术特点:1.技术创新程度高,本技术在保持传统的塑料加工方 法的基础上,通过合理控制加工条件和加工手段,另辟蹊径解决纳米分散难题,其成果在纳米复合材料领 域属国际首创;2.科学思想新颖;3.材料性能优异;4.工艺简单、技术实用。
中山大学 2021-04-10
酸性烤蓝工艺制备高饱和磁通密度软磁复合材料的方法
本发明公开了一种酸性烤蓝工艺制备高饱和磁通密度软磁复合材料的方法。采用酸性烤蓝工艺在软磁合金粉末表面包覆由尺寸均匀的纳米Fe3O4形成的包覆层,经粘结、压制成型、热处理工艺,制备新型的软磁复合材料。本发明的优点是:采用酸性烤蓝工艺制备Fe3O4方法简单,并且容易控制Fe3O4层的厚度, 由于该反应是原位反应,因此制备的绝缘层致密,与磁粉的结合度高。与传统的软磁复合材料相比,由于绝缘层为亚铁磁性的Fe3O4,有效减少了磁稀释现象,从而可以得到具有高饱和磁通密度、高磁导率的软磁复合材料。
浙江大学 2021-04-11
碱性烤蓝工艺制备高饱和磁通密度软磁复合材料的方法
本发明公开了一种碱性烤蓝工艺制备高饱和磁通密度软磁复合材料的方法。采用碱性烤蓝工艺使磁粉表面氧化生成一层均匀的Fe3O4的绝缘层,然后经粘结、压制成型、热处理工艺,制备新型软磁复合材料。本发明的优点是:采用碱性烤蓝工艺制备的Fe3O4是在软磁粉末的表面原位生长,因此绝缘包覆层与磁粉之间结合度高,并且包覆均匀致密;由于Fe3O4具有较高的电阻率,因此具有较好的绝缘效果;另一方面,用亚铁磁性的Fe3O4作为绝缘包覆剂,克服了传统非磁性物质作为包覆剂的磁稀释现象,可以获得更高的磁导率及磁通密度;碱性烤蓝工艺操作简单,成本较低,有利于实现工业化生产。
浙江大学 2021-04-11
锂离子电池内包装材料(电池膜)的开发及产业化
我国已经成为电池生产大国,国内电池行业对软包装材料的需求量十分巨大。该材料主要用于锂电池生产企业,包括手机电池、钮扣电池、笔记本电脑电池、DVD电池、照相机电池,以及将来的电动车电池等,涉及的行业非常广泛,预计到2015年总市场需求量将超过8000吨。但是,目前为止国内没有任何企业能够生产出完全满足要求的软包装材料,因此,软包装材料的研究和开发成为电池行业提高国产化率、降低成本和提升企业竞争力的迫切需要。华东理工大学于2003年联合江苏中金玛泰医药包装有限公司进行该类软包装材料的前期研究,主要研究内容是对聚合物锂电池软包装材料体系的成分、组织和功能进行一体化设计,开发出适合于聚合物锂电池生产工艺和技术要求的复合软包装成型材料,用于电池芯的内包装。经过多年的艰苦努力,目前已经掌握了该材料制备中的关键技术,尤其是已经很好地解决了复合膜耐电解液腐蚀的问题,并大幅提高了复合膜内膜的剥离强度。实验室小试样品已送至惠州TCL金能、东莞新能源、国光电池、合肥荣仕达、上海南都等几家电池厂试用,结果表明部分关键指标基本上能满足生产要求,小试样品的性能明显优于韩国产品,与日本产品相当,而在初始剥离强度和耐高温性能方面则超过日本产品。本项目具有自己的核心技术,相关的技术申请两项发明专利,一项获得公开,一项获得授权。
华东理工大学 2021-04-11
均匀降解且降解速率可控的高强韧生物医用镁合金及其复合材料
在镁合金多元组分设计理论、复合化体系构建以及表面功能化技术等方面开展了大量创新型研究, 自主研制了具有自主知识产权的均匀降解且降解速率可控的高强韧镁合金及其复合材料,并且形成了系统的表面功能化改性技术,研究成果在生物植入器械(如 心血管支架、骨科固定)领域具有广泛的应用前景。提出多元合金化设计和 LPSO / SFs 相结构调控理论, 克服了传统镁合金降解不均匀、变形能力差以及强度低等难题, 研制出一系列均匀降解且降解速率可控的高强韧镁合金 , 该合金不仅保持高的抗拉强度(大千 350 MPa , 最高可到 410 MPa ) 和延伸率(大千20%), 实现了合金屈强比在 50%"'93%范围内的可控调节 , 而且降解速率低(小千 0. 4 毫米/ 年)且均匀降解。在此基础上,突破镁合金的结晶和加工尺寸瓶颈,创新性地提出了镁合金/非晶和镁合金/高分子的新型复合体系, 并形成了系统的表-界面功能化改性技术, 解决了单一镁合金降解速度过 快、碱性降解以及功能欠缺等系统性难题, 赋予了材料力学性能可设计、降解性能可调控以及抗菌功能化等特性。
南京工程学院 2021-04-11
用于修复全层皮肤缺损的丝素/海藻酸钠可降解生物活性双层支架材料
研发阶段/n该成果成功制备了SF/SA复合双层结构支架材料,其在拉伸断裂强度明显增加,SF/SA50/50多孔材料的增加幅度最大,由单层材料时的48±7KPa提高到598±69KPa,增加了一个数量级,同时双层材料的形变量大幅度增加,双层材料的竖切面可形成定向大孔,横切面孔洞分布均匀,孔径在100~120 μm之间,薄膜与多孔材料之间紧密结合,增强了支架材料的力学性能。 通过对不同实验组全层皮肤缺损修复过程的观察和评价,结果表明,双层支架组修复效果最好,其修复的皮肤组织抗拉强度为1.29
武汉理工大学 2021-01-12
首页 上一页 1 2
  • ...
  • 959 960 961
  • ...
  • 999 1000 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1