高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种菜地雨水径流自动分阶段连续定时采样器
本实用新型公开了一种菜地雨水径流自动分阶段连续定时采样器。该采样器初期径流收集启动装置由两个雨水感应器、一个液位控制台组成;暴雨期间不同时段的径流水质情况通过核心电路控制单元控制采样间隔时间,定时启动关闭时间及液位感应器高度,以适应暴雨期间不连续降雨情况的采样;取样槽中间设置硅胶管滞留废液槽,各时段样品不受上一时段样品影响,水样采集更为准确,能更加精确监测到径流水质受暴雨影响的时间过程。该装置自动化程度高,可以实现对一次降雨过程菜地雨水径流的自动分阶段,间歇性连续采样。
浙江大学 2021-04-13
一种散热器导热胶泥压制工具及板卡散热结构
本实用新型公开了一种散热器导热胶泥压制工具及板卡散热结构,一个板卡只设置一个散热器,采用压制的导热胶泥块实现板卡上各个电子元件和散热器的缝隙填充,该导热胶泥压制工具包括机架,所述机架上水平放置有胶泥模具,所述胶泥模具的上平面设有用于放置胶泥的胶泥腔体及用于实现散热器定位的散热器定位结构,所述机架在胶泥模具的上方设有将散热器压紧在胶泥模具上的压块以及带动压块升降的压块升降驱动装置。本实用新型采用的板卡散热结构可以解决由于各电子元件的高度不同带来的导热元件设置难题,而对应的导热胶泥压制工具可以满足胶泥厚度和形状要求,保证导热胶泥压制质量。
浙江大学 2021-04-13
一种超重力环境下两自由度循环荷载模拟装置
本实用新型公开了一种在超重力环境下两自由度循环荷载模拟的装置。包括结构相同的两个水平调整支座、装置底座、X向传动机构、Y向传动机构、Y向传动机构支撑构件、加载构件和导线拖动滑杆组件。本实用新型在安装时可以通过调整水平支座的左右和上下位置来实现复杂条件下的试验装配;通过反馈控制X向、Y向伺服电机使其进行力或者位移循环加载模拟,且可以通过计算机方便的调整循环的幅值和频率;导线滑杆结构可以在超重力环境下保持导线的自由牵引;X向限位开关可以灵活的调整限位保护范围;加载头的结构特征可以有效的解决加载时双向相互干扰的问题。综上,该装置功能完善、安装方便、安全可靠,可以满足在超重力环境下复杂荷载的模拟需要。
浙江大学 2021-04-13
一种鸭坦布苏病毒基因工程亚单位疫苗
本发明的目的是提供一种鸭坦布苏病毒基因工程亚单位疫苗,即采用生物技术对鸭坦布苏病毒E蛋白进行抗原表位分析、拼接,获得一种鸭坦布苏病毒新型融合蛋白DE,并以该融合蛋白作为抗原来制备鸭坦布苏病毒基因工程亚单位疫苗。本发明中鸭坦布苏病毒新型融合蛋白DE,其编码蛋白的氨基酸序列为SEQ ID NO:1;其中一种核苷酸序列为SEQ ID NO:2。本发明利用pET28a(+)表达性载体构建了能表达鸭坦布苏病毒新型融合蛋白DE的大肠杆菌BL21(DE3)宿主菌。将重组表达的蛋白纯化后制备成基因工程亚单位疫苗,可使免疫后鸭群获得免疫保护。
青岛农业大学 2021-04-13
CO2资源化利用合成DMF技术
上海交通大学 2021-04-11
从合成革废水中回收DMF技术
在湿法聚氨酯合成革生产过程中,产生大量的合成革废水,其中含有约10~15%的二甲基 甲酰胺(DMF)。目前国内大都采用精馏法回收废水中的DMF,即以蒸发大量的水分的方法回收DMF。采用精馏法回收DMF耗能高,以精馏15m3/h的处理量,需耗标准煤约1.1吨。由于耗煤量高,由此产生的二氧化碳及二氧化硫的排放量也大,同时在回收过程中,由于DMF的水解会产生二甲氨臭味。 从合成革废水回收DMF技术采用萃取-精馏以及吸附-热解析方法,并采用高效新型的萃取设备,常压萃取,精馏分离溶剂及DMF,并以吸附-热解析处理使水得到重新利用。选择了具有较低汽化潜热的溶剂作为萃取剂,设计高效新型的涡轮萃取塔,使DMF的回收率达到98%以上,DMF的纯度达到99.5%;采用吸附-热解析使废水重新得到利用。 技术先进性: 1、萃取-精馏法能耗低,仅为单塔精馏的25%。可大大减少煤耗、二氧化碳及二氧化硫的排放; 2、萃取-精馏法不产生二甲氨臭味; 3、废水充分得到循环利用; 4、不产生新的污染。 技术创新点: 1、采用高效新型的萃取设备,使萃取效率大大提高,且能耗可降低60%以上; 2、回收的DMF纯度高,可循环使用; 3、废水经处理后可回收利用。 该技术可广泛用于湿法聚氨酯生产合成革领域。
华东理工大学 2021-02-01
高性能多官能度可控合成和应用
环氧树脂具有良好的耐腐蚀性、固化收缩率低、机械性能和电性能优异等特点,因而广泛用于涂料、胶黏剂、复合材料(^及电子封装材料等领域。然而传统双酷A型环氧材料存在质脆、耐热性不足和使用温度低等问题,限制了它的应用。针对上述问题,本项目的研究工作主要从分子设计出发制备了一系列结构可控的多官能环氧树脂,FF其中包括超支化环氧聚合物W及四官能度环氧树脂,并将它们添加到双酷A型环氧树脂(DGEBA)中改性。经超支化环氧聚合物改性后,FF材料的拉伸强度、冲击强度及玻璃化转变湿度(Tg)等性能得到同FF时改善;经四官能度环氧树脂改性后,材料能够在Tg大于250°C的同FF时还兼具优异的强度和初性。基于这些改性效果,深入研究了结构与FF性能的关系,并讨论了改性机理。本项目的主要内容如下: 提出了一种超支化可控聚合的新方法,即利用竞争反应得到分子量可控及支化度不变的超支化聚合物。制备了一种可控Tg的超支化聚合物体系。利用竞争聚合反应制备了端基为环氧基的聚厳型超支化聚合物EHBPE。利用竞争反应原理制备出四种不同结构的超支化环氧聚合物。制备了一种髙性能的环氧均聚材料。制备了一系列新结构四官能度环氧树脂。
北京化工大学 2021-02-01
合成气高选择性制取烯烃
烯烃作为化工领域的核心分子,是合成纤维橡胶塑料等重要材料的单体,属于一类重要的高附加值化工原料。工业上的烯烃主要来源于石脑油的裂解。近年来,随着石油资源的日益减少和C1化学的迅速发展,开发从合成气直接制备烯烃的反应路径来替代传统的石化路线具有十分重要的意义。 传统合成气转化路径中约50%CO转化成了CO2和CH4等温室气体副产物,碳原子利用效率低下,严重降低了该路径的能源和经济效益。如何高效降低该过程中CO2和CH4副产物的生成、提高特定燃料产品的选择性在国际能源化工界一直是巨大挑战。 武汉大学定明月教授团队通过将碳化铁纳米晶体包裹在疏水性无定形SiO2壳中,开发出一种具有优异疏水性的核-壳型FeMn@Si催化剂。通过给催化剂包裹一层“疏水铠甲”,从而实现了56%的高CO转化率和13%的低CO2选择性,烯烃收率高达36.6%。核层碳化铁活性相与壳层疏水基团的高效协同,将能拓展出一系列新型的复合催化剂,通过抑制高耗能的水煤气变换反应,大幅度降低合成气转化过程中的CO2排放,显著提高碳原子利用效率,有望实现合成气更高效、更经济制取烯烃、汽油、芳烃、航油等各种高附加值化学品。该研究成果发表在《Science》期刊上,同期《Science》期刊发表了亮点评论文章,高度评价了该工作,认为该工作对于实现“碳达峰、碳中和”目标提供了新的解决方案。 合成气在疏水性FeMn@Si催化剂上高效制取C2+烯烃
武汉大学 2021-05-12
二甲硝咪唑水溶性盐合成
一、项目简介 以简便而行的方法合成水溶性二甲硝咪唑盐,收率达95%以上。二、主要技术性能指标 产品mp 182—185℃,含量≥99%
武汉工程大学 2021-04-11
硝基苯催化加氢合成对氨基酚
项目简介对氨基苯酚(p-AminopHenol,简称PAP)是合成医药、农药及染料等的重要中间体,并可用作橡胶防老剂。是世界十大药品之一扑热息痛及子午线轮胎防老剂的主要原料。国内外有关对氨基酚合成研究的报道很多,主要有:对硝基苯酚铁粉还原法、硝基苯催化氢化法和硝基苯电解还原法等。其中硝基苯催化加氢还原法工艺流程短,能耗低,污染小,设备和工艺条件也不十分苛刻,对氨基苯酚收率较高,产品质量较好,被普遍认为是未来发展的方向。而目前国内之所以一直未能实现大规模的工业化生产,主要存在以下问题:(1)催化剂与产品分离困难。目前,该工艺所采用催化剂为Pt/C,所用载体为粉末状活性炭。该催化剂不仅粒度小,而且比重较小,在工业化生产中将催化剂从反应后的混合物中分离出来极为困难。(2)生产成本高。由于该工艺采用贵金属Pt为催化剂,因此催化剂的回收及套用将直接决定着生产成本。Pt/C催化剂在回收过程中损失较为严重,而且失活催化剂的再生也较为困难,导致生产成本上升,市场竞争力下降。(3)以硫酸为反应介质,对设备材质要求较高,同时副产大量的稀硫酸铵溶液,必须进行综合利用。针对目前该工艺存在的上述问题,本项目研究的重点是在现有工艺的基础上,开发Pt/SiO2催化剂,利用SiO2比重大,易于分离的特点,解决催化剂与产品分离上的困难,降低产品成本。以Pt/SiO2为催化剂,PAP收率可达到85%。二、市场前景几年来,全世界对氨基苯酚的消费量已超过12万t/a;目前,我国需求量也已超过3万t/a,并以10%/a的速度增长,因此对氨基苯酚具有广阔的市场。三、合作方式  寻求中试放大合作。项目负责人:王延吉联系电话: 022-60204867
河北工业大学 2021-04-11
首页 上一页 1 2
  • ...
  • 995 996 997 998 999 1000 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1