高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
中国科大在常压二氧化碳加氢制备长链烯烃研究中取得新进展
中国科学技术大学合肥微尺度物质科学国家研究中心和化学物理系曾杰教授研究团队设计构筑了铜-碳化铁界面型催化剂,实现了常压下二氧化碳加氢高选择性制备长链烯烃。
中国科学技术大学 2022-06-02
西安交通大学科研人员与清华大学合作实现固溶体合金中间隙溶质原子占位的直接观察
近期,西安交大刘畅研究员等通过将大量间隙氧原子(12 at%)固溶进TiZrNb系中熵合金,将其屈服强度提升至接近理论强度的4.2 GPa(C. Liu et al.Nat. Commun.13, 1102 (2022))。
西安交通大学 2023-02-23
“镜湖一号”——“高校对外宣传数据智能分析平台”一体机
当前,高校内部学院、部门网站更新不及时,僵尸网站、发布内容存在不规范用语、错别字等情况较为普遍,造成了很大的安全风险。由内蒙古财经大学自主开发的“镜湖一号——高校对外宣传数据智能分析平台一体机”,很好的解决了上述出现的问题。同时,还具备了呈现学校对外宣传数据数据分析与挖掘的可视化态势展现功能,支持大屏观看和手机端查看。“镜湖一号”基于高校对互联网发布的各类数据,使用人工智能和大数据分析技术设计应用模型,让学校的管理者实时掌握数据动态。 应用场景及创新点: 1.监控敏感信息泄露,展现处置状态。 2.代替人工发现更新不及时、不到位的网站。 3.对比分析高校党建态势,同时展现学校内部各部门党建状态和成果。 3.实时展示高校发布的宣传数据态势,分析出最受欢迎、热门文章等。 4.平台支持国产化平台部署。 5.实现一体机快速部署。
内蒙古财经大学 2025-05-08
全三维电磁粒子模拟软件CHIPIC3D研制
全三维粒子模拟软件CHIPIC是国家*63计划*03主题支持项目“***粒子模拟软件研发”的主要研究内容,其研究目的是在坚实理论基础指导下,深入开展强波粒相互作用理论及HPM和HPMM相关理论研究,建立强流相对论互作用的理论体系,为高功率微波器件理论研究提供一款实用的粒子模拟软件。 因为粒子模拟软件在军事领域有重大应用价值,国外的一些先进粒子模拟软件对我国是禁运的(如美国的MAGIC),从而一些内部技术对我国也是封闭的。本软件是完全依靠国内的自身条件研制完成的,是具有完全知识产权的软件。由本软件运算的准确性(与国外软件比较验证)可以证明本成果使用的技术线路是完全可与国外软件媲美的。 该项目完成了三维电磁粒子模拟理论与算法、软件设计、软件测试等研究内容,突破了高效并行计算、大尺度结构建模、三维PIC/MCC混合算法等关键技术,设计了友好的图形化输入界面及多窗口输出界面,形成了功能完整的CHIPIC3D模拟软件。并最终应用于对高功率微波源、真空电子学太赫兹源、脉冲功率真空器件等进行三维粒子模拟。 该项目主要技术指标如下:1.CHIPIC3D全三维电磁粒子模拟软件在直角及圆柱坐标系下实现了三维FDTD及粒子算法,能对各种对称、非对称结构的高功率微波源及太赫兹波源器件进行三维粒子模拟,模拟结果与实验吻合。2.采用基于消息交换与共享内存相结合的并行计算方法,使加速比达到30以上;3.采用分段建模并行计算的方法,能对30米以上大尺度精细结构进行三维粒子建模及模拟;4.将蒙特卡洛及Vaughan模型算法应用于三维粒子模拟软件,使其能模拟介质表面二次电子倍增、气体放电及介质表面击穿等复杂物理问题;5.采取面向对象的方法,能提供友好的图形化的输入界面及多窗口输出界面。 目前该软件已在中国工程物理研究院流体物理研究所、中国工程物理研究院应用电子学研究所、北京应用物理与计算数学研究所、国营第七七二厂、四川大学电子信息学院、西南交通大学等单位应用。从军事应用角度来看,该软件将缩短我国高功率微波源的研究周期,从而加快我国军队相关武器装备的研究进程;从经济效益角度来看,该软件避免了大量的重复加工及重复试验,节约了大量的人力物力,从而为用户单位带来巨大的经济效益。
电子科技大学 2021-04-10
基于三维头像的聋儿语言康复方法及系统
本发明涉及基于三维头像的聋儿语言康复方法及系统,属于医疗仪器类,其主要技术是将三维建模与可视语音技术相结合,建立基于参数驱动的三维唇动模型及适合聋儿康复的三维汉语辅助发音可视语音库,并在三维会话头像建立的基础上,结合语音识别和图像识别技术对聋儿发音进行校正,以达到帮助聋儿恢复汉语发音功能.
长春大学 2021-04-30
具有增强现实交互功能的三维光场显示技术
三维显示技术是信息显示追求的终极目标,本项目实现的三维光场显示技术是下一代显示屏的主流技术,可应用于三维手机屏,三维电视屏,三维广告屏等多个细分市场领域。本项目三维光场显示技术的主要特点是解决了当前三维显示存在的视差串扰问题,在屏幕前方180度范围内,可在任意位置观看到无串扰和无视差跳变的三维图像。本技术同时解决了当前立体显示长期观看存在视觉疲劳的问题。适用于游戏、广告、电影等多种应用。本项目同时开发了实时的三维场景采集和交互技术,可以实现三维场景的实时三维显示,以及手势、体感等人机交互,可以实现虚实融合显示,结合交互可以实现三维增强现实显示。
东南大学 2021-04-11
全三维电磁粒子模拟软件CHIPIC3D研制
该项目主要技术指标如下:1.CHIPIC3D全三维电磁粒子模拟软件在直角及圆柱坐标系下实现了三维FDTD及粒子算法,能对各种对称、非对称结构的高功率微波源及太赫兹波源器件进行三维粒子模拟,模拟结果与实验吻合。2.采用基于消息交换与共享内存相结合的并行计算方法,使加速比达到30以上;3.采用分段建模并行计算的方法,能对30米以上大尺度精细结构进行三维粒子建模及模拟;4.将蒙特卡洛及Vaughan模型算法应用于三维粒子模拟软件,使其能模拟介质表面二次电子倍增、气体放电及介质表面击穿等复杂物理问题;5.采取面向对象的方法,能提供友好的图形化的输入界面及多窗口输出界面。
电子科技大学 2021-04-10
基于光谱抽样直方图的超光谱降维匹配方法及系统
本发明提供一种基于光谱抽样直方图的超光谱降维匹配方法及系统,包括对待匹配光谱和光谱库中 的所有光谱分别进行归一化处理,分别获取归一化后的待匹配光谱和光谱库中所有光谱的抽样直方图, 计算待匹配光谱的抽样直方图与光谱库中所有光谱的抽样直方图的欧氏距离,在光谱库中选取与待匹配 光谱抽样直方图欧氏距离最小的一条光谱作为匹配对象。本发明通过对归一化后的光谱使用等间距的窄 带进行抽样,从而获得维数远小于原始光谱的抽样直方图,完成了光谱的降维,然后使用降维后的抽样 直方图代替原始光谱进行匹配,显著降低了后续匹配时的运算量,同时在抽样时利用分段提取的方法保 留了光谱图中的相对位置信息,提高了匹配的精度。
武汉大学 2021-04-13
晶圆级二维半导体单晶薄膜外延生长的研究
主流硅基芯片CMOS(互补金属氧化物半导体)技术正面临短沟道效应等物理规律和制造成本的限制,需要开发基于新材料和新原理的晶体管技术来延续摩尔定律。高迁移率二维半导体因其超薄的平面结构和独特的电子学性质,有望成为“后摩尔时代”高性能电子器件和数字集成电路的理想沟道材料,进一步缩小晶体管的尺寸和提高其性能。为满足集成电路加工工艺和器件成品率对沟道材料的苛刻要求,二维半导体单晶薄膜的大面积制备尤为关键与重要。然而,现有二维半导体材料体系(过渡金属硫族化合物、黑磷等)薄膜制备仍未满足现实要求,因此亟需实现晶圆级二维半导体单晶薄膜制备技术的突破。 该研究瞄准二维半导体材料的晶圆级单晶制备,率先实现了同时具有高电子迁移率、合适带隙、环境稳定的二维半导体(硒氧化铋,Bi2O2Se)单晶晶圆的外延生长。他们基于自主设计搭建的双温区化学气相沉积系统,在商用的钙钛矿单晶基底【SrTiO3,LaAlO3,或(La, Sr)(Al,Ta)O3】上,利用Bi2O2Se与钙钛矿完美的晶格匹配性及较强的界面相互作用,促使Bi2O2Se晶核同一取向外延并融合生成晶圆级单晶薄膜。Bi2O2Se单晶薄膜在晶圆尺寸上表现出优异的材料和电学均匀性,可被用于批量构筑高性能场效应晶体管。基于晶圆级二维Bi2O2Se单晶薄膜的标准顶栅型场效应晶体管展现了高的室温表观迁移率(>150 cm2/V s)、大的电流开关比(>105)和较高的开态电流(45μA/μm)。相关成果发表在Nano Letters (Wafer-Scale Growth of Single-Crystal 2D Semiconductor on Perovskite Oxides for High-Performance Transistors. Nano Lett. 2019, 19, 2148)。
北京大学 2021-04-11
有机电荷转移分子调控二维材料电学特性研究
已有样品/n使用有机电荷转移分子F4TCNQ与MoS2结合形成范德华界面,通过F4TCNQ与MoS2之间的电荷转移来降低沟道内无栅压情况下的载流子浓度。MoS2晶体管的开启电压(Von)从负数十伏被调制至0伏附近,F4TCNQ并未导致MoS2晶体管包含迁移率在内的任何电学性能的下降,其亚阈值摆幅(SS)反而明显提升。团队成员通过第一性原理计算以及扫描开尔文探针显微镜表征证实了范德华界面处电荷转移的存在性,并研究了F4TCNQ对Mo
中国科学院大学 2021-01-12
首页 上一页 1 2
  • ...
  • 62 63 64
  • ...
  • 994 995 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1