高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
小鼠染色质三维结构重塑研究成果
2020年4月14日,同济大学生命科学与技术学院高绍荣团队与江赐忠团队在《Nature Communications》杂志在线发表了题为“Chromatin architecture reorganization in murine somatic cell nuclear transfer embryos”的研究成果。他们采用了经过优化的少量细胞全基因组染色质构象捕获技术(sisHi-C),对小鼠SCNT胚胎发育过程进行连续采样,并详细描绘了SCNT植入前胚胎染色质高级结构的动态变化过程。 体细胞核移植(SCNT)技术是将已经分化的体细胞移入去核卵母细胞内,使体细胞的染色质发生重编程,继而重启胚胎发育过程并获得完整个体的技术。虽然SCNT是目前为止唯一一种可以使体细胞获得完整全能性的手段,但是由于在重编程过程中出现了各种表观遗传水平修饰的异常,使得SCNT胚胎的发育能力处于较低水平,也极大程度地限制了该项技术的应用前景。高绍荣教授团队长期致力于小鼠SCNT胚胎发育异常原因的探索。2016年通过对早期克隆胚胎进行卵裂球活检,并结合单细胞RNA测序技术首次建立了植入前核移植胚胎发育命运追踪系统,发现了组蛋白去甲基化酶Kdm4b和Kdm5b分别对克隆胚胎2-细胞和4-细胞时期的发育阻滞起到关键作用。两年后,又通过对不同发育命运体细胞克隆胚胎进行全基因组DNA甲基化高通量测序分析,详细地研究了小鼠克隆胚胎着床前发育过程中DNA甲基化修饰的重编程过程,并揭示了异常的DNA再甲基化(DNA re-methylation)是导致克隆胚胎着床后发育异常的关键因素。在哺乳动物中,染色质三维结构对基因的调控起着非常重要的作用。但是,受制于小鼠SCNT胚胎样本取材困难和Hi-C技术对细胞样本起始量高的限制,小鼠SCNT植入前胚胎发育过程中染色质三维结构的动态变化过程尚未被全面研究过。 在本研究中,研究人员收集了核移植后多个时间点的胚胎并利用优化的微量细胞sisHi-C技术对染色质高级结构进行了检测,通过数据分析发现,在体细胞核被注射到去核的卵细胞后,随着典型三维染色质结构的消解,供核体细胞染色质的近距离相互作用优先解开,并迅速由间期转化为类中期状态。在这期间出现了一个非常有趣的现象,当供体细胞在去核卵母细胞中被人工激活1个小时后,基因组经历了从类有丝分裂中期向类第二次减数分裂中期的转变。 图1. SCNT胚胎基因组在短时间内由有丝分裂类中期转变为减数分裂类中期 在SCNT胚胎发育6小时进入类原核期(对应正常受精胚胎PN3时期)后,重新出现了较弱的区室结构和拓扑相关结构域(TADs)信号,这很可能是再次退出中期的结果。随后,TADs信号在一细胞晚期逐渐减弱,直到2细胞早期降到最低值,在2细胞晚期到8细胞卵裂期逐步重新建立,直到囊胚期成熟(图2)。 图2. SCNT胚胎发育各个阶段的TAD强弱变化 随后研究人员将小鼠SCNT与正常受精胚胎发育sisHi-C公共数据集进行比较分析后发现,SCNT胚胎在2细胞期的远距离(>2 Mb)相互作用较正常受精胚胎明显降低。同时,早期(2到8细胞期)受精胚胎与SCNT胚胎的区室结构及TADs也存在着明显的差异。 前期的很多研究表面小鼠SCNT胚胎在合子基因组激活(ZGA)时期有大量的基因未能被正常激活。于是,研究人员想到染色质空间结构的异常是否会导致增强子与启动子之间的相互作用无法成功建立?结果表明,在小鼠正常受精卵的ZGA时期的关键基因Zscan4d的启动子与上游的超级增强子有着强烈的相互作用,而这种互作却无法在SCNT胚胎中被观察到(图3)。这类基因的激活异常很可能就是SCNT胚胎发育能力低下的原因之一。那么,造成染色质高级结构的异常的原因究竟是什么呢?研究人员证实这是由于供体细胞基因组中持续存在的组蛋白H3K9me3修饰无法被正常擦除造成的。通过在SCNT胚胎中过量表达组蛋白去甲基化酶Kdm4d来降低H3K9me3修饰水平, SCNT胚胎的染色质空间构象会趋向正常受精胚胎,且Zscan4d的启动子与超级增强子的互作也得到了部分的修复(图3)。这说明H3K9me3修饰是核移植胚胎中染色质高级结构重编程的重要障碍,也证实了在胚胎基因表达调控过程中组蛋白修饰和染色质高级结构的协同作用。 图3. SE-P互作异常影响ZGA相关基因表达,并能被过量表达Kdm4d部分纠正 综上,这项研究对小鼠SCNT胚胎发育过程中的染色质三维结构重塑进行了系统的研究,这也为今后进一步纠正SCNT胚胎发育过程中的表观遗传屏障提供了新的思路。 图4 本研究的模式图 同济大学生命科学与技术学院博士研究生陈墨、朱乾书和李翀副研究员为本文共同第一作者,高绍荣教授、江赐忠教授和刘晓雨研究员为本文共同通讯作者。该研究得到了科技部、基金委和上海市科委项目的支持。
同济大学 2021-04-11
富锂层状及三元锂电池正极材料
富锂的层状结构 Mn 基氧化物及三元(NCM)材料具有高容量的特点,成本低廉,工作电压与现有电解液匹配,安全性好,考虑到振实密度,比容量等综合性能,其应用前景很好,适用于数码通讯类滇池、笔记本电脑、电动工具电池、汽车电池等。该项目具备产学研合作基础。 项目特色: 针对富锂锰基和三元正极材料首次充放电效率低,倍率性能交差,锂层中阳离子的混排、高电压下电极材料与电解液之间反应等问题,通过表面包覆、体相掺杂、颗粒微纳化和形貌控制等多种方法,以提高其电化学性能。 通过原位 XRD、XAS、EXAFS、电化学阻抗谱(EIS)、原位扫描电镜与透射电镜、扫描隧道显微镜、原位核磁共振、同步辐射和中子衍射等技术,获得无机材料及相关体系的原位分析与诊断新方法。 优化设计并研制新型电极,电池制备工艺技术,构筑高容量,长循环稳定性的新型锂电池。 市场应用前景: 扩大富锂层状与三元电极材料与新型锂电池技术成果的推广力度,促成成果转化和产业化,使中小型企业规模成长,提升电池行业研发水平和产业链结构优化,带动锂电池及储能产业发展。 
南开大学 2021-04-13
化工“三废”一体化深度净化技术
石化产业的废气、废水、废渣排放量分别位居工业污染物排放量的第1、第4和第5位,现有工艺针对废气、废水、废渣分别采用焚烧、生化等方法处理,存在投资大、能耗高、达标排放难等问题。本项目以“过程减量化、治理精准化”为理念,开发“废弃物”中资源化合物的回收技术、废气/废水催化氧化技术、废渣临氧裂解技术、低品位能量综合利用技术,形成化工“废气、废水、废渣”“一站式”净化的成套装备与工艺技术。并且环保装置与化工装置一体化运行,实现化工装置的“三废”零排放。
南京工业大学 2021-01-12
用于票证的激光三代防伪材料和识别仪器
成果与项目的背景及主要用途: 防伪,是企业在目前社会诚信缺失、假冒伪劣商品扰乱企业正常经营和损害企业、消费者利益的情况下,为保护企业市场、保护广大消费者合法权益而采取的一种防范性技术措施。企业在充分利用防伪技术来打击假冒伪劣、整顿和规范市场的同时,更是品牌企业对外提升企业及其产品形象、展示企业对消费者、对社会负责任的一种必须手段。 同时,企业应以防伪为契机,将有效的防伪措施作为企业的一种战略投资,并有计划地制定并逐步实现防伪工作目标,并将防伪贯穿于产品生产、市场营销、企业管理的全过程,将防伪作为企业维权、打假、增效、塑造品牌的重要手段。 技术原理与工艺流程简介: 将高科技应用于防伪是国际上普遍采用的方法之一,基于频率转换技术的特殊光学防伪措施就极具代表性,比如:紫外油墨防伪、激光防伪等。特殊光学防伪是利用发光器(如:激光器、特定波长光源等)激发涂覆在纸面上的特殊材料,发出特定波长的光,再利用接收系统对此光进行接收,从接收信号的有、无或编码顺序来识别真假。可以看出,特殊光学防伪涉及到几个重要的元器件,即特定波长半导体激光光源、窄带光学滤波器、光电探测器和专用处理芯片及配套的机具结构。在防伪鉴别系统的研制过程中,对这几种器件提出了很高的要求,即体积小、强度高、温度特性好、对特定波长接收敏感、自动漂移补偿等,以保证防伪机具的稳定性和可靠性。我们采用的原理是频率变换光油墨,然后用某个特定波长的激光激发,最后用 PD 探测,以此组成防伪识别仪器。所谓光学频率转换理论是采用光谱发射器件以特定的波长激发被测物的表面产生另一个特定波长的光学信号,这个信号经过光滤波器件、专用光电接收器件后由专用信号处理电路进行识别,并使整个系统始终处于自动补偿状态。光子混合集成器件就是使新型光谱发射器件、专用光电接收器件、光滤波器件在一起有效地组合,可采用混合集成或光电集成来制成这种光子集成芯片调试、封装,再加上专用弱光信号处理及补偿芯片等元件实现优化组合和匹配,构成微型化系统模块。其原理图如下 频率变换原理:当荧光物质被激光照射时,其电子就会吸收光子被激发而跃迁至激发态,当他向低能态跃迁时,就产生荧光。从此发光过程来看,由于发光主要是电子跃迁引起的,并且经研究表明此种频率变换效应需要有晶体的机制才能发生,所以,简单的改变油墨涂料颜色等不会对它的频率变换有所影响。 应用前景分析及效益预测:防伪度高,识别性强,具有客观的市场前景。 应用领域: 包装防伪行业 合作方式及条件:根据具体情况面议
天津大学 2021-04-11
LW1800三维焊接机器人
激光焊接,可焊接非标准形状材料,可从360度焊接。 此外,还有一些非标准材料,例如一些固定几何和角度的材料,也可以由它焊接。可应用于碳钢、不锈钢、锌、铜、铝、铬、金、银等多种金属及其合金材料的焊接。
济南金威刻科技发展有限公司 2021-06-16
XM-116头颅骨模型带三颗牙
XM-116头颅骨模型   XM-116头颅骨模型可以拆分为颅盖、颅底和下颌骨3部分,并有3颗可拆下牙:切牙、尖牙、磨齿,显示颅骨形态毗邻和颅底的内、外、前和侧面的结构和形态及骨性标志。 尺寸:自然大,19×15×21cm 材质:PVC材料
上海欣曼科教设备有限公司 2021-08-23
XM-515下颌下三角解剖模型
XM-515下颌下三角解剖模型   XM-515下颌下三角解剖模型显示舌神经、舌下神经分布及解剖关系等。 尺寸:自然大,15×20×8cm 材质:PVC材料
上海欣曼科教设备有限公司 2021-08-23
创想三维CR-20203D打印机
一、产品参数 裸机尺寸:370*370*521mm 打印尺寸:200*200*200 打印速度:≤150mm/s 打印精度:±0.1mm 可用耗材:PLA/ABS/木材/软胶TPU/含铜/碳纤维等 机器净重:18KG 耗材直径:1.75mm 打印方式:联机或SD卡脱机 打印层厚:0.1-0.4mm可选 喷嘴直径:标配0.4mm,可换0.2/0.3mm 电源要求:输入110-240V可选;输出24V 绘图软件:Proe/Solidworks/UG/3Dmax/CAD/犀牛等 文件格式:STL/OBJ/JPG/PNG/Gcode 操作界面:英文/中文 切片软件:Cura/Repetier-Host/Simplify3D 切片软件界面:中文、英文 实际功率:190-200W 二、产品优势 1、光轴采用日本高精工艺,是高精度光轴,大大提高答应精度; 2、打印过程十分安静,无机械噪音; 3、近端送料,操作一键进退料; 4、采用国际知名电源; 5、装备LED模块,便于打印过程中更好的观察; 6、装备打完关机功能,打印完模型后可自动关闭喷头、显示屏、热床及LED灯等模块上的部件,提高硬件的使用寿命,同时节省用电; 7、智能断料检测功能; 8、喷头组件快速维护; 9、线路简洁,看上去很清楚; 10、工作稳定,连续打印72小时无压力; 11、一体式无缝焊接机身,更加结实稳固。
深圳市创想三维科技股份有限公司 2021-08-23
创想三维CR-103D打印机
  一、产品参数   1、框架:专利技术,进口高精特制铝型材   2、成型工艺:FDM(熔融制造)   3、喷头数量:1   4、成型尺寸:300*300*400mm   5、层厚:0.05~0.4?mm可调   6、内存卡脱机打印:支持SD卡   7、液晶屏:有   8、打印速度:不大于200mm/s,正常打印速度100MM/S   9、喷嘴直径:标配0.4可换0.3/0.2/0.6/0.8   10、喷嘴温度:室温至250度   11、热床:3MM超厚一体式加热铝板特质钢化玻璃成型平台   12、支持材料:PLA、ABS、软胶,木材,碳纤维、含金属耗材1.75mm,多色可选   13、材料直径:1.75mm   14、耗材倾向性:PLA性能更佳   15、软件语言:中英文   16、支持文件格式:STL,G-Code   17、机器尺寸:490*600*615mm   18、机器重量:10.3Kg   19、套件包装尺寸:540*640*310mm   20、包装后重量:14Kg   21、电压:输入110-240v输出24v   22、操作系统:Windows,Lunis,Mac   23、界面语言:中英文   24、环境要求:10-30℃,湿度20-50%   二.产品优势   1、套件式发货,易学易用易组装,组装测试仅需十分钟   2、超大DIY成型尺寸:300*300*400MM   3、集成式机箱:发挥您的无线拓展能力   4、线性轴承系统:型材+滑轮轮=零缝隙配合,精度更高,运动更稳,声音更小   5、进口高分子材料加工而成,超长耐磨时间超过两年   6、集人体力学与美学一体而成的手扭螺母   7.超长打印时间:7*24小时以上测试时间   8、傻瓜式一键切片控制系统新手也能变成庄家   9、可支持云切片,云打印,云监控,云管理等系统方案   10、厂家提供在线接单增值服务,在家也能创业赚钱。
深圳市创想三维科技股份有限公司 2021-08-23
创想三维CR-30403D打印机
  一、产品参数   1、成型尺寸:300*300*400mm   2、设备尺寸:450*360*560mm   3、层厚度:0.05mm~0.4mm(可选)   4、喷嘴直径:0.4mm   5、打印速度:
深圳市创想三维科技股份有限公司 2021-08-23
首页 上一页 1 2
  • ...
  • 84 85 86
  • ...
  • 146 147 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1