高等教育领域数字化综合服务平台
云上高博会服务平台
高校科技成果转化对接服务平台
大学生创新创业服务平台
登录
|
注册
|
搜索
搜 索
综合
项目
产品
日期筛选:
一周内
一月内
一年内
不限
甲醇气相氧化羰基化法合成碳酸二甲
酯
项目简介碳酸二甲酯(DMC)是正在崛起的化工原料新产品,1992年欧洲登记为非毒性化学品。主要原料为CO、O、甲醇。利用自行开发的高效固相催化剂促进甲醇气相氧化羰基化法合成碳酸二甲酯,取代当前使用的光气法,不仅可降低成本,而且在生产过程中原料及中间体无剧毒,不腐蚀设备,无三废处理问题,对环境保护有着重要意义,被誉为21世纪的“绿色化学品”,应用它还可开发一系列新颖的化工产品,可实现绿色化工过程,小试已完成。针对CO、O和甲醇气—固相催化合成DMC,经过多年的实验研究,开发出一种性能较好的合成DMC固体催化剂,在常压下DMC时空收率达到350g/l-cat.h,寿命已超过100小时,达到零排放。小试已鉴定,该指标在国内外同类方法中处于先进水平。二、市场前景DMC可用于制备聚氨酯、聚碳酸酯、医药、农药、香料等;可代替硫酸二甲酯作羰基化剂、甲基化剂和甲脂化剂;还可作高新烷值汽油增进剂,是近年来石油化工热门产品,并可衍生一系列新的化工产品,被誉为有机合成的新基块。以甲醇氧化羰基化合成DMC,原料来源、市场需求和化工产品系列化方面皆具有明显的优势;并且是21世纪极有吸引力的基本化工原料。特别是石油资源贫乏的地区,DMC对当地化工生产将起到重要作用。三、投资与规模建设生产规模500吨/年的中试装置,投资约800万元。四、生产设备 固定床反应器、精馏塔等。五、合作方式寻找中试伙伴。
河北工业大学
2021-04-13
碳酸二甲
酯
下游系列精细化工产品
天苯胺基甲酸甲酯广泛用于多种优良杀虫剂的合成中间体,还可用于其他各种农药、医 药、精细化工等领域中;目前其制备方法都直接或间接使用剧毒的光气作为原料,对环境污染 严重,而且生产成本较高。本技术直接采用碳酸二甲酯与苯胺进行酯交换合成,反应条件温 和,收率较高,是一条清洁生产工艺。 肼基甲酸甲酯是医药卡巴、卡巴多司、卡巴氧、阿苯达唑等的中间体,还可用于合成碳酰 肼等。由碳酸二甲酯与水合肼一步合成,产率高、无三废,过程清洁无毒。年产1000吨规模, 投资90万元。 三氯甲基碳酸酯替代光气及双光气,在有机合成、高分子材料、医药、农药、香料和染料 等领域应用极其广泛。年产1万吨规模,投资2200万元。 碳酰肼是一种方便、安全的水处理剂。目前碳酰肼的合成方法都采用剧毒的原料来合成, 环境危害较大。本课题组采用碳酸二甲酯生产碳酰肼,反应条件温和,设备简单,工艺安全, 无三废。整个过程转化率达95%以上,而选择性几乎100%。是绿色清洁工艺。国际先进。 呋喃唑酮是一种具有较广抗菌谱的呋喃类杀菌剂,对多种革兰氏阳性及阴性大肠杆菌、炭 疽杆菌、副伤寒杆菌和痢疾杆菌等均有效,主要用于治疗细菌性痢疾、肠炎等,也可用于治疗 尿道感染;近年来用于治疗伤寒,疗效较好。 目前,国内呋喃唑酮的生产厂有十多家,但其合成方法主要为乙醇胺、尿素路线,该法工 艺流程长、三废严重。本课题组采用碳酸二甲酯羰基化路线合成呋喃唑酮,反应路线短、条件 温和、操作简易。整个过程基本无三废、收率高,为清节生产工艺。年产3000吨,设备投资约 1000万元。
华东理工大学
2021-04-13
一种荆芥内酯氟苯甲酸
酯
及其制备工艺和用途
【发 明 人】丁安伟 ; 张丽 ; 李念光 ; 包贝华 ; 陈佩东 ; 曹雨诞【技术领域】本发明涉及一种荆芥内酯氟苯甲酸酯及其制备工艺和用途,属于药物制剂技术领域。【摘要】 本发明公开了一种荆芥内酯氟苯甲酸酯及其制备工艺和用途,荆芥内酯氟苯甲酸酯,其特征是分子式为C17H17FO4,熔点为158-160℃,其比旋度为(c?1.0,CH3OH),本发明还公开了它的提取方法,以及在制备抗流感病毒药物中的应用。
南京中医药大学
2021-04-13
天然有机酸根昆布氨酸
酯
在功能奶制品中的应用
本发明公开了一种天然有机酸根昆布氨酸酯在功能奶制品中的应用,其可作为牛奶安全添加剂,每种组合的天然有机酸根昆布氨酸酯经过毒理实验分析,可使小白鼠半致死量在5300‑7600mg/kg之间,属于实际无毒物质;昆布氨酸酯添加百分重量比为0.1‑1%,牛奶制品保质期延长,并具有预防高血压的保健功能。与现有技术中常采用的消毒法,即巴氏消毒法相比,本发明昆布氨酸酯弥补了巴氏消毒技术的缺陷,对耐热性丝衣霉属等微生物有抑制作用,起到延长保鲜保质作用,如保鲜期比单独巴氏消毒法保鲜保质期延长5‑83天。本发明有机酸根昆布氨酸酯在功能奶制品中的新应用,其一剂多效,既有保鲜作用,又有预防高血压保健作用,增加了牛奶制品的花色品种,并且,有机酸根昆布氨酸酯是天然海洋非蛋白氨基酸衍生物,与传统氧化型消毒剂、含苯结构功能分子相比,生态环保,有更好的生物相容性,满足食品的安全要求,有良好的经济效益与社会效益前景。
青岛大学
2021-04-13
微生物发酵生产丙酮
酸
的关键技术
丙酮酸是一种重要的有机酸,广泛应用于制药、日化、农用化学品和食品等工业中,微生物发酵法生产丙酮酸具有低成本、高质量等优势。本研究室在自行选育的四重维生素营养缺陷型菌株光滑球拟酵母 CCTCC M202019 的基础上,从代谢能力、鲁棒特性和环境适应性等入手,阐释了影响 T. glabrata 高效积累丙酮酸的关键因素。提出并实践了全局高效调控 T. glabrata 代谢功能的新方法。
江南大学
2021-04-11
微生物发酵生产衣康
酸
的关键技术
衣康酸是一种不饱和二元脂肪酸。由于衣康酸具有特殊的化学结构,决定了它具有十分活泼的化学性质,既可以自身聚合,也可以和其他分子发生加成、聚合等化学反应,是一种应用前景十分广阔的化学合成中间体,广泛应用与化工、医药、农业等领域,被誉为有机酸领域中皇冠上的宝石。本研究通过诱变和高通量 筛选获得一株高产衣康酸的生产菌株
江南大学
2021-04-11
6-氨基青霉烷
酸
反应结晶新技术与设备
成果与项目的背景及主要用途: 6-氨基青霉烷酸(6APA)是重要的半合成青霉素的“母核”,在 6-氨基青霉烷酸 的氨基上引入不同的侧链,可制备成各种的高效、稳定、抗菌广谱、服用方便的 多种半合成青霉素。天津大学通过多年攻关,成功开发出了 6APA 精制结晶新技 术与设备,生产出的 6APA 产品纯度高,稳定性好,晶形完美,粒度分布均匀, 产品收率达到 93%以上。 技术原理与工艺流程简介: 青霉素 G(V)钾盐或钠盐经固定化酶裂解后,通过蒸发浓缩,有机溶剂萃 取后,原料液进入新型结晶器,通过计算机辅助控制的反应结晶工艺,生产出高 质量的 6APA 晶体产品。 技术水平及专利与获奖情况: 工艺开发成熟,天津大学国家工业结晶中心多年成功的工艺和设备设计经验 为产业化打下坚实的基础。 应用前景分析及效益预测: 通过自主开发的 6APA 生产技术和设备,生产出的 6APA 产品完全可以达到 国际先进水平,为后续半合成青霉素的生产提供优质的药用中间体原料。本技术 15天津大学科技成果选编 不仅适用于 6APA 的结晶生产,而且适用于其他两性电解质(包括氨基酸等)的 生产,另外,也适用于固定化酶裂解反应工业开发和设备设计。应用前景广阔, 经济效益显著。 应用领域:药用中间体的制备和结晶提纯(包括固定化酶催化裂解、真空升膜和 降膜浓缩、有机溶剂萃取和等电点反应结晶等多种工艺流程集成)。
天津大学
2021-04-11
一种铋
酸
锂纳米棒复合电子封装材料
(专利号:ZL 201510560801.8) 简介:本发明公开了一种铋酸锂纳米棒复合电子封装材料,属于封装材料技术领域。本发明铋酸锂纳米棒复合电子封装材料的质量百分比组成如下:铋酸锂纳米棒65‑80%、聚丙乙烯10‑15%、脂肪醇聚氧乙烯醚羧酸钠0.05‑0.5%、三羟甲基丙烷5‑10%、硅树脂甲基支链硅油4‑10%。本发明提供的复合电子封装材料使用铋酸锂纳米棒作为主要原料,具有热膨胀系数小、导热系数高、耐老化及耐腐蚀性能优良、易加工、绝缘性好等特点,在电子封装材料领域具有良好的应用前景。
安徽工业大学
2021-04-11
一种锡
酸
锶纳米棒复合电子封装材料
简介:本发明公开了一种锡酸锶纳米棒复合电子封装材料,属于封装材料技术领域。本发明锡酸锶纳米棒复合电子封装材料的质量百分比组成如下:锡酸锶纳米棒65-80%、聚乙二醇10-15%、乙撑双硬脂酰胺0.05-0.5%、三聚丙二醇二缩水甘油醚5-10%、乳化甲基硅油4-10%,锡酸锶纳米棒的直径为80 nm、长度为1-2 μm。本发明提供的锡酸锶纳米棒复合电子封装材料具有热膨胀系数小、导热系数高、绝缘性好、耐老化及耐腐蚀性能优良、易加工及制备温度低等特点,在电子封装材料领域具有良好的应用前景。
安徽工业大学
2021-04-11
一种氨基
酸
叶面肥料及应用
本发明提供一种氨基酸叶面肥料,由20%—50%复合氨基酸、1%—50%尼克酰胺、10%—20%七水硫酸亚铁、10%—20%尿素、5%—10%硼酸、1%—5%抗坏血酸、1%—5%表面活性剂聚山梨酯80的物料组成,要求pH 5.0-6.0。本发明提供的氨基酸叶面肥料肥效稳定,能显著强化不同基因型水稻籽粒铁营养,平均能使精米中铁含量显著提升15%以上,显著提升精米蛋白质和氨基酸含量,可全面提升稻米营养品质,质优价廉,可在高效生物强化水稻籽粒铁营养,并显著提升稻米营养品质中应用。
浙江大学
2021-04-11
首页
上一页
1
2
...
28
29
30
...
46
47
下一页
尾页
热搜推荐:
1
高校实验室分级分类管理平台
2
云上展厅已成功吸引1万余家企业入驻!
3
第62届高博会圆满落幕,明年春天相约春城!