高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
太阳能低温小型LiBr吸收式空调系统
本装置是一种利用太阳能作为驱动力、采用环境友好的LiBr-H2O作为工质的小型空调系统。通过特殊设计的溶液提升管,实现内部溶液的自循环,无需电泵作为动力。运行温度在70至90℃范围,制冷量在5至10kW范围。特别适合中小型别墅或办公楼使用。本装置主要采用了狭逢通道小温差强化传热专利技术、激淋式横管和竖管降膜蒸发与冷凝技术以及多效回热、强化冷凝、强化对流等多项先进的强化传热传质措施,使装置具有节能、稳定和运行温度低的特点。只要有太阳能或发动机余热的地方即可使用,能在20~40℃的环境温度下、在60~90℃的供热水温度范围内正常工作,满足太阳能集热器提供热水的各项技术要求。在80℃的供热水温度下运行时的COP达到0.6以上。
北京理工大学 2021-04-13
太阳能低温小型LiBr吸收式空调(产品)
成果简介:本装置是一种利用太阳能作为驱动力、采用环境友好的LiBr-H2O作为工质的小型空调系统。通过特殊设计的溶液提升管,实现内部溶液的自循环,无需电泵作为动力。运行温度在70至90℃范围,制冷量在5至10kW范围。特别适合中小型别墅或办公楼使用。本装置主要采用了狭逢通道小温差强化传热专利技术、激淋式横管和竖管降膜蒸发与冷凝技术以及多效回热、强化冷凝、强化对流等多项先进的强化传热传质措施,使装置具有节能、稳定和运行温度低的特点。只要有太阳能或发动机余热的地方即可使用,能在20~40℃的环境温度下
北京理工大学 2021-04-14
一种抽水蓄能机组水轮机工况智能开机方法
本发明公开了一种抽水蓄能机组水轮机工况智能开机方法,包括:(1)建立抽水蓄能机组的水泵水轮机调节系统仿真模型;(2)在水泵水轮机调节系统仿真模型中设置三个阶段开机控制原则;(3)根据三个阶段开机控制原则,并采用离散形式时间乘误差绝对值积分指标作为控制参数优化的目标函数来建立开机过程控制参数优化目标函数;(4)运用启发式优化方法求解所述开机过程控制参数优化目标函数,并获得最优控制参数。本发明优选出控制参数,并应用到仿真计算后,显著提升不同水头下抽水蓄能机组水轮机工况开机品质,缩短开机时间、减小超调量和
华中科技大学 2021-04-14
量子相变研究
研究了二维二聚化量子自旋系统,通过理论分析和高精度的量子蒙特卡洛方法,发现在交错状二聚化量子海森堡模型中,相变临界指数具有新奇的非单调尺寸标度行为。他们通过在有限尺寸标度理论中引入两个驱动场,同时进行大尺寸的计算分析,成功地解释了非单调的量子蒙特卡洛结果,从根源上指出二维二聚化量子自旋系统的相变仍然属于O(3)普适类,适用于量子-经典对应理论。他们的研究表明,在量子相变中可能存在多个驱动场导致的新奇标度行为,需要采用正确的标度理论才会得到正确的结果。在论文中,他们还创造性地提出多参数联动-高阶拟合方法,能极大地提高数据准确度,可以用在不同体系的数据分析中。
中山大学 2021-04-13
太阳能高效聚光热电联产装置
本项目技术成熟,已成功完成 500kW 示范装置安装和运行并通过科技部验收,光电效率可达 12%以上,光伏光热总效率可达 65%以上,投资回收期为 3.9 年。
西安交通大学 2021-04-11
基于微纳光学结构的太阳能电池高效陷光技术
 太阳能发电是未来可再生能源的重要领域,提高太阳能电池对太阳光的利用效率、进一步提高太阳能电池的光伏效率,已经成为光伏领域的重要课题。太阳能电池的本征吸收层很薄,甚至小于光的波长,使得进入太阳能电池光子的光程很短,成为除材料以外,制约太阳能电池进一步提高光伏效率的重要因素。为了提高光子在太阳能电池本征吸收层中的吸收率,需要研究在降低电池表面反射的同时,延长光子在本征吸收层的光程,实现高效陷光。 本项目基于微纳光学理论和微纳结构加工技术,提出了“低表面反射+低光能逃逸+高效延长光程”的高效超陷光机制,设计了具有“低表面反射率+低光能逃逸+高效延长光程”的高效超陷光结构。利用宽带陷光技术研发的宽带陷光光伏玻璃,在380nm~1200nm波长范围内,具有高于40%的雾度。宽带陷光光伏玻璃基片应用于硅叠层薄膜太阳能电池, 在380nm~1200nm波长范围内,对于准垂直入射光的反射率小于3%. 在AM1.5测试环境下,太阳能电池光伏效率比较没有陷光结构光伏玻璃的太阳能电池相对提高5%。以上。 基于微纳光学结构的太阳能电池高效陷光技术,在太阳能电池、太阳能电池组件封装中具有广泛的应用前景,对于提高太阳能电池及其组件的光伏效率具有重要意义。
上海交通大学 2021-04-13
一种基于相变储能的热泵空调及生活热水联合系统
本发明公开了一种基于相变储能的热泵空调及生活热水联合系统,利用两种相变材料在不同温度区间的储能耦合热泵空调及太阳能热水。该联合系统包括热泵空调单元、相变储能单元和太阳能热水单元;热泵空调单元包括压缩机、冷凝器、膨胀阀、蒸发器、换热器,相变储能单元包括高温相变室、低温相变室、绝热层、进出口切换管路,太阳能热水单元包括太阳能集热器、电辅热、储水箱。该系统在夏季供冷,冬季供热,常年需生活热水的场所,通过相变储能单元内同时对高温与低温的储能与释能,实现在时间上转移热泵空调单元产生的能量,达到对用电量‘削峰填
东南大学 2021-04-14
低温SCR脱硝技术
一、 项目简介NOX作为一种主要的空气污染物会造成一系列的环境问题,例如光化学烟雾、酸雨、地表水富营养化、臭氧层破坏等。如何有效的消除氮氧化物引起了全球的关注,也是我国大气环保中的重点。人类活动产生的NOX主要是由燃烧所致,目前, 减少燃烧烟气中的NOX排放主要有燃烧控制和烟气脱硝两种措施。各种控制方法中选择性催化还原法(SCR)由于兼顾经济和效率成为火电厂等固定源主要的脱硝技术。其主要技术是在催化剂作用下,用NH3、尿素或者其他烃类为还原剂,把NO、NO2还原为N2和H2O。但是,传统的脱硝方式存在一些问题:受催化剂活性温度限制的要求,传统SCR装置一般安装在除尘器和脱硫塔的上游以满足最佳催化温度为350-400℃的要求。这种安装方式会使得烟气中含有大量的飞灰和SO2,造成催化剂活性的降低和使用寿命的缩短,且增加了现有锅炉脱硝改造的难度。有的烟气脱硝SCR装置也安装在除尘器之后,但需要安装烟气再热系统才能满足反应温度的要求,这样就带来能耗增加,从而影响经济性。因此,研究低温SCR脱硝技术,保证其在250℃甚至更低的温度下运行,使得SCR反应器可以安装在电除尘和脱硫塔之后,具有重要意义。迄今为止,我们的实验研究已经获得重要进展,即获得了在150~250℃之间脱硝效率超过80%的催化剂,其脱硝效率和传统脱硝方式相当,但温度却大大降低,应用前景非常广阔 。二、 项目技术成熟程度已完成低温SCR脱硝催化剂的性能实验工作。三、 技术指标在150~250℃之间,催化剂的脱硝效率超过80%。四、 市场前景在锅炉等燃烧设备需要脱硝的地方都可以应用,市场前景广阔。五、 规模与投资需求投资规模1000万元,厂房及设备设施需求等。六、 生产设备溶解池、干燥炉、金属切割、焊接等。七、 效益分析按每年生产2000吨计算,可获利约2000-3000万。八、 合作方式技术入股,技术转让等形式。九、 项目具体联系人及联系方式项目负责人和联系人:苟湘,电话:13652167898,邮箱:gouxiang@sina.com 。
河北工业大学 2021-04-11
纯低温余热发电技术
我国水泥产量连续20年位居世界第一,水泥工业不仅是能源消耗大户,也是能源浪费大户,即使先进的新型干法工艺,仍然有约占水泥熟料烧成系统总热耗量35%的350℃以下低温废气余热不能被充分利用而直接排放。 为了实现节能降耗减排的可持续发展的战略,充分利用水泥生产中的中低温余热,降低水泥生产中的能源消耗,开发研制水泥生产线中低温余热利用系统具有重要的现实意义和工程实用价值。 为此,西安交通大学与相关单位合作,1991年承担国家重点科技攻关计划,2007年承担国家高技术“863”计划项目,进行水泥窑中低温余热发电工艺及系统的研究。针对5000T/D、2500T/D等水泥生产线,采用双压技术,开发研制了系列化的具有自主知识产权的纯低温余热发电系统。与5000T/D水泥窑配套的BN7.5、BN9双压纯低温余热发电系统已经投入工程实际使用,后续BN5、BN10、BN14.5、BN20发电系统也已经开发完成。2006年9月27日BN7.5MW双压纯低温余热发电系统在辽源金刚水泥集团建成投产,2007年8月27日,BN9MW机组在河南省驻马店豫龙同力水泥公司并网发电。在项目的实施过程中,合作单位主要负责项目的产业化和设备制造安装调试,而关键技术则由西安交通大学进行研究和开发。主要内容包括采用新型高效叶片、抗水蚀特性和数字电液控制系统的双压进汽补汽式汽轮机的开发,新型高效换热部件的研制,锅炉换热器的抗摩、抗腐、防集灰关键技术研究,以微处理器为核心的DCS控制系统的研制,水泥生产和发电工艺相结合的双压余热发电工艺研究和系统参数优化。经过系统的分析和深入的研究,为纯低温双压余热发电系统的建设提供了理论基础和试验数据,在工程实际中得到推广和应用。
西安交通大学 2021-04-11
第二代中低速磁悬浮整车技术
本成果已经完成样车验证,开始进行中试。
西南交通大学 2016-06-27
首页 上一页 1 2
  • ...
  • 5 6 7
  • ...
  • 779 780 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1