高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
白云石生产轻质碳酸镁,轻质氧化镁, 阻燃剂 用氢氧化镁
轻质碳酸镁,轻质氧化镁,阻燃剂型氢氧化镁等镁盐系列产品是重要的无机盐产品,不仅用途广泛,而且用量很大,是当前备受重视的商业产品之一。过去生产这些产品一般是以制盐业后的苦卤水及纯碱或碳铵为原料生产,由于原材料价格较高,生产能力受到成本的限制,为满足市场的需要,一些科研人员和生产商家们开始研究以白云石为原料来生产这些产品,经过几年的努力攻关,已经开发成立了多级碳化法,由白云石来制备轻质碳酸镁等镁系列产品。产品主要用于橡胶,陶瓷,耐火材料,耐火坩埚,油漆,造纸,医药,玻璃,染料,塑料,日用化妆品,无机新型阻燃剂氢氧化镁大量用于橡胶,塑料生产中,它们还用于现代工业中作为高效排烟脱硫剂广泛使用,作为阻燃剂使用,氢氧化镁具有降低,抑烟阻燃等多种功能,而受到用户的欢迎。上述产品由于原料来源方便,价格低廉,生产中无或低“三废”排放,产品用途广泛,用量大,应用功效高等特点,因而具有十分美好的应用前景。
武汉工程大学 2021-04-11
一氧化碳气体报警器,一氧化碳气体报警器
产品详细介绍一氧化碳气体报警器济南中诚专业生产厂家,【TEL:0531-88883789 联系人:李经理】,一氧化碳进入人体之后 会和血液中的血红蛋白结合,进而使血红蛋白不能与氧气结合,从而引起机体组织出现缺氧,导致 人体窒息死亡,因此一氧化碳具有毒性,一氧化碳气体报警器RBK-6000型产品广泛应用于炼焦、炼铁、锻冶、铸造和 热处理的生产等工业等存在一氧化碳气体的危险场所。固定式是由两部组成的,一部分是RBK-6000 型气体报警控制器,一部分是RBT-6000的一氧化碳浓度报警器,探测器与控制器之间采用三芯屏蔽电 缆或ZRRVV三芯电缆连接,探测器和控制器上都有接线端子。一氧化碳气体报警器RBK-6000型控制器高端的人性化设计 ,主机采用了壁挂式箱体设计,面板状态直接显示,安装简单,操作方便。一氧化碳泄漏检测仪探 测器采用工业专用防爆装置,进口气敏传感器检测灵敏度使用寿命长。     济南中诚仪器仪表有限公司生产的液化气泄露检测仪液化气气体报警器证书齐全,有公安部及 消防部颁发的型式认可证书,防爆合格证,ISO-9000认证等,一氧化碳浓度超标检测仪销往全国各地 ,十年的生产经验和高端的科研队伍是各行各业厂家值得信赖的产品,愿广大消费者前来采购。 一氧化碳气体报警器产品特点: RBK-6000使用高速CPU处理器,能够快速精确地处理系统任务,保证系统的可靠性。 LCD液晶屏幕,可实时显示探测器的浓度、状态。 使用485通讯协议,可靠性高。 4组可编程的继电器,无源常开、常闭触点,触点容量240V5A 采用模块化结构设计,便于系统维护。 可通过计算机实现本地监控及远程监控,探测器运行状态数据可永久存储。 实现可燃与毒性气体探测器的混合配置。 选购配件 备电电源转化模块。 中继器模块 联动控制模块 执行器 一氧化碳气体报警器技术参数: 与RBT-6000气体探测器配套使用 工作电压:AC220V±10% 使用温度:-20℃~60℃ 使用湿度:≤95%RH LCD液晶屏幕显示:ppm/%LEL 报警系统:声光报警 报警音量:≥75dB 传输距离:≤2000m 外形尺寸:370mm(L)×305mm(W)×90mm(H) 重量:≤4.5kg 济南中诚仪器仪表有限公司 联系人:李经理 电话:0531-88883789 手机:13969050081 邮箱:sdzclar01@163.com QQ:1245851641  
济南中诚仪器仪表有限公司 2021-08-23
一种环保型双金属钙钛矿量子点的制备方法
本发明提供了一种环保型双金属钙钛矿量子点的制备方法。在惰性气体保护的条件下,先将AgBr和BiBr3与反应溶剂十八烯,表面活性剂油酸、油胺混合,使其完全溶解,然后将混合溶液加热至反应温度,随后注入溶有溴化丁胺的DMF溶液,体系开始反应生成钙钛矿结构,并随着反应的进行,逐渐形成(C4H9NH3)2AgBiBr6量子点,最后用丙酮淬灭反应,即得到最终的(C4H9NH3)2AgBiBr6双金属钙钛矿量子点。本发明采用热注入合成方法,通过调节合成环境的酸性,在不改变钙钛矿形貌和晶体结构的前提下,实现对钙钛矿光学性能的调控。合成的钙钛矿量子点单分散性和稳定性较好,形貌均一,对于构筑能带隙可调的光电器件具有深远的意义。
东南大学 2021-04-11
钙钛矿太阳能电池中非辐射复合能量损失的研究
钙钛矿太阳能电池制备工艺简单,成本低廉。近年来,该类太阳能电池因其快速增长的光电转换效率和逐步提升的器件稳定性,吸引了学术界和产业界的广泛关注,为光伏领域带来了新的机遇。然而,由于钙钛矿太阳能电池中存在非辐射复合损失,所以目前的光电转换效率依然低于肖克利-奎塞尔(Shockley-Queisser)理论所定义的极限效率。因此,最大化降低钙钛矿太阳能电池的非辐射复合损失是进一步提升电池器件效率的未来研究重点。 鉴于此,研究团队基于已有的研究基础,对“最大化降低钙钛矿太阳能电池的非辐射复合损失”这一论题进行深入探讨和系统总结。该综述文章主要包括以下几个方面:首先,介绍了钙钛矿太阳能电池中非辐射复合的起源,并详细讨论了非辐射复合损失的定量化测试方法;其次,系统总结了在降低非辐射复合损失方面的最近研究进展;再次,依据肖克利-奎塞尔理论,对钙钛矿太阳能电池所能够获得的最高光电转换效率进行了科学预测;最后,在展望部分,前瞻性地指出了最大化降低非辐射复合损失的未来努力方向。图1. 金属卤化物钙钛矿活性层内的电荷载流子产生与复合动力学机制 在理想的金属卤化物钙钛矿半导体材料中,所有的光生电子和空穴最终将通过发射光子的方式进行复合(即:辐射复合)。然而,在实际的钙钛矿太阳能电池中存在大量的非辐射复合通道(如图1所示),绝大部分光生载流子将优先通过其他非辐射途径进行复合(例如,缺陷辅助复合,俄歇复合,界面诱导复合,电声耦合,带尾态复合等)。这些非辐射复合损失过程极大降低了电池在稳态下的光生载流子浓度,从而减小了金属卤化物钙钛矿层中准费米能级劈裂的能级差,最终造成钙钛矿太阳能电池较大的电压损失。因此,最大化降低或抑制这些非辐射复合通道是提升器件开路电压和光电转换效率的关键。 针对各种非辐射复合通道,该综述首先介绍了目前量化分析非辐射复合损失的常规测试技术以及测试要点,如图2所示。图2. 量化钙钛矿薄膜和完整器件中非辐射复合损失的表征技术 随后,结合当前研究现状,进一步梳理了近年来在降低非辐射复合损失方面取得的一系列重要进展。值得一提的是,该研究团队去年在《Science》杂志上报道的基于溶液二次生长方法构建渐变结的策略(如图3所示),在降低反式钙钛矿太阳能电池的非辐射复合损失方面效果显著(Science 360, 1442-1446)。此后,一系列研究报道显示,相似的策略在正式常规结构钙钛矿太阳能电池和全无机钙钛矿太阳能电池中也可以获得正向的实验结果。由此说明,在金属卤化物钙钛矿半导体材料中构建有效的渐变结对后续降低非辐射复合损失具有非常重要的借鉴价值。图3. 渐变结钙钛矿太阳能电池器件结构和渐变结的时间分辨光谱 此外,该综述还以当前最高效率的砷化镓太阳能电池为参照,先假定钙钛矿太阳能电池的非辐射复合损失与砷化镓太阳能电池的情形一致,再依据肖克利-奎塞尔理论,对钙钛矿太阳能电池所能够获得的性能参数进行科学预测,进而给出电池器件所能达到的最高光电转换效率,如图4所示。图4. 当钙钛矿太阳能电池的非辐射复合损失与当前最高效率砷化镓太阳能电池的情况相同时,单结钙钛矿太阳能电池可实现的最优器件性能参数 最后,该综述也指出,目前提升器件性能的两条主要途径是最优化光子俘获和最大化降低非辐射复合损失。如果能将二者进行有效整合,探索更可靠的协同优化策略,这可能会是将器件光电转换效率提升至接近理论极限的可行方案。为此,综述也对一些未来的努力方向进行了展望。 总的来说,该综述为最大程度地降低钙钛矿太阳能电池的非辐射复合损失提供了理论总结,也为开展实验工作提供了参考借鉴,对进一步提升电池效率,推动该类电池产业化应用有重要意义。
北京大学 2021-04-11
一种半透明钙钛矿太阳能电池及其制备方法
本发明公开了一种半透明钙钛矿太阳能电池及其制备方法,钙 钛矿太阳能电池包括透明导电基板 a、无机电子传输层、光捕获层、无 机空穴传输层和透明导电基板 b,其中光捕获层由 DXZ3 型钙钛矿材 料 形 成 , D 选 自 Cs<sup>+</sup> 、 CH3NH3<sup>+</sup> 、 CH(NH2)2<sup>+</sup> 或 其 混 合 物 , X 选 自 P
华中科技大学 2021-04-14
无卤阻燃聚对苯二甲酸丙二醇酯(PTT)的合成技术
聚对苯二甲酸丙二醇酯(PTT)是上世纪90年代产业化的新型聚酯,其纤维具有优异的弹力回复性、柔软性、蓬松性和染色性,在高档服装、地毯等方面有广阔的应用前景,同时其原料之一丙二醇可来源于可再生的生物基原料。然而PTT属于可燃材料,易燃性极大的限制了其应用。本技术采用高效无卤反应型阻燃剂DDP和BCPPO制备了两种本质阻燃聚对苯二甲酸丙二醇酯,该技术既可在酯交换法也可在直接酯化法中使用,产品具有阻燃性好,效果持久、不含卤素、无毒、对设备无腐蚀,对聚酯的其他性能影响不大以及可纺性好等特点;通过进一步创新思路,改进工艺,我们采用固相聚合方法研制合成出分子链结构可控的本质阻燃含磷PTT阻燃嵌段共聚酯,产品在具有前述优异本质阻燃性能的基础上,很好的保持了PTT的结晶性能,从而更好的保持了PTT特有的优异弹力回复性能。该技术可利用传统聚酯(聚对苯二甲酸乙二醇酯,PET)固相聚合设备,操作简单,产品结构可控,性能稳定. 主要技术、指标: 特性黏数:0.8——1.5 dL/g,Tg = 45——65 °C, Tm = 210——230 °C,氧指数:25——30, 热分解温度(氮气)≥360 °C。 建设投产条件: 现有PET产能严重过剩,可在PET生产线上进行改造。 年产百万吨的生产线约需改造费百万元。
四川大学 2023-05-15
10万吨/年碳酸二甲酯联产7万吨乙二醇
碳酸二甲酯 (DMC) 是近年来受到国内外广泛关注的环保型绿色化工产品:它能与水形成共沸物,也能以任何比例与有机溶剂——醇、酮、酯等混合,是一种优良绿色溶剂;由于DMC分子中含有CH3-、CH3O-、CH3O-CO-、-CO-等多种官能团,因而具有良好的反应活性。因此DMC作为溶剂和化工原料,应用非常广泛。 1992年DMC在欧洲通过了非毒性化学品 (No toxic substance) 的注册登记。从DMC出发,可合成聚碳酸酯、异氰酸酯、胺基甲酸酯、丙二酸酯、丙二尿烷等许多化工产品; 在制取高性能树脂、溶剂、染料中间体、药物增香剂、食品防腐剂、润滑油添加剂等领域用途越来越广泛,在许多领域可取代高污染、剧毒化学品光气、氯甲酸甲酯及硫酸二甲酯,消除这些剧毒化学品对环境的污染,被誉为是开创明日化学新的、低污染泛用基础绿色化学原料,被称为当今有机合成的“新基石”。DMC还可能发展成为动力燃料油品的掺入料。近10年来DMC的推广应用增加了30余倍。国际上主要是意大利ENI和日本Ube,本项目充分利用了环氧化合物水解合成二元醇过程的活性和能量,通过产品耦合、过程耦合及系统集成,技术国际领先,比国外先进的甲醇氧化羰基化法,投资减少70%以上,节能90%以上,生产成本减少60%以上,国内技术都是本技术的前期第一、二、三代技术,本项目是第五代技术,技术处于国际领先水平,产品质量优异,优级品含量大于99.5%,比第三代成本降低50%。与国际上乙二醇生产厂商(产能4980万吨) 比较,投资减少20%,不增加能耗和操作费用,多生产了一个DMC产品,因此具有非常强的的国际市场竞争力。 年产10万吨碳酸二甲酯、7万吨乙二醇/年、1万吨EO,总投资64969万元。
华东理工大学 2021-04-13
一种新型2,4-二羟基二苯甲酮绿色合成催化工艺
本发明公开了一种具备高除湿能力且循环稳定性优异的含一维孔道的锆基金属有机框架材料及其制备方法和应用,通过水平轴向扩展X型有机连接子的核心部分,确保有机连接子“邻位二苯甲酸”部件保持不变,实现能同时满足含一维孔道、Zr&lt;subgt;6&lt;/subgt;簇螯合配位甲酸根同平面且相邻Zr&lt;subgt;6&lt;/subgt;簇甲酸氧间距≤5.4Å三个必备条件的锆基金属有机框架材料的同构合成。同时具备以上三个条件可有效限制相邻Zr&lt;subgt;6&lt;/subgt;簇之间中心位置引入水分子,从而防止了该位置水分子在脱附过程中引起受力不均衡导致整体网格结构坍塌的情况。通过有意地缩短或延长有机连接子核心在水平轴向上的长度,合成得到的含一维孔道的锆基金属有机骨架材料均表现出高的水吸附循环稳定性。
南京工业大学 2021-01-12
干法制备氧化锆高性能粉体、牙科用氧化锆瓷块及全瓷义齿制备技术
牙科陶瓷具有优良的光传播和光反射性能,可以再现自然牙半透明深度和色深度,有良好的生物相容性,磨耗性接近牙釉质、不导电、不产生CT和MRI的伪影、X射线透射,化学性能稳定、在口腔环境中不降解,抛光和上釉的瓷面光洁,菌斑不易附着,且陶瓷修复体美观,是最具发展潜力的牙科修复体材料。
北京大学 2021-02-01
一种用于超级电容器电极材料的纳米氧化镍的制备方法及其制备的纳米氧化镍
本发明公开了一种用于超级电容器电极材料的纳米氧化镍的制备方法及其制备的纳米氧化镍,首先将NiCl2·6H2O与氯化胆碱基深共熔溶剂混合,得到质量浓度为10~30g/L的溶液Ⅰ;加热至120~150℃,将100~300份的去离子水与1000份溶液Ⅰ混合,反应0.5~2h,经离心分离得到沉淀物,再经洗涤、干燥、煅烧后,得到所述的纳米氧化镍。本制备方法条件温和、耗时短,适合大规模工业化生产;制备得到的花状纳米NiO的晶粒粒径小于10nm,粒径分布均匀且比表面积大,以其作为电极材料制备的超级电容器,具有较高的可逆容量和循环性能,3000次充放电循环后比容量仍稳定在460F/g附近。
浙江大学 2021-04-11
首页 上一页 1 2
  • ...
  • 45 46 47
  • ...
  • 137 138 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1