高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
聚乙烯基苯磺酸或其盐作为室温磷光材料的应用
项目成果/简介:本发明涉及有机发光材料技术领域,更具体地,涉及聚乙烯基苯磺酸或其盐作为室温磷光材料的应用。背景技术:室温磷光与荧光相比具有特殊的延时特性,一方面,可避免短寿命的荧光和散射光的干扰,另一方面,特殊的延时特性可以作为一种特定的防伪信号,具有难以模仿的防伪性能。然而现存的无机室温磷光材料在应用方面存在一定的限制,如稀土长余辉材料,由于其室温磷光寿命过长、难加工成型,使其在防伪方面难以发挥作用。而大多数有机室温磷光材料存在难合成、难加工、加工过程污染大的问题。大量的室温磷光材料都含有重金属、卤原子,不仅污染大、毒性高、不易加工而且价格昂贵,合成危险且难度高。同时有机磷光材料的三重态对温度和氧气极其敏感,传统观念认为对有机化合物而言,磷光只能在低温、无氧条件下获得,极大的限制了其在各类领域的应用。因此,如何基于商品化的水溶性聚合物材料,合理设计开发出高效的、成本低、易加工成型的无卤、可水性印刷的室温磷光聚合物材料在理论和应用研究方面都具有重要的研究意义和价值。目前已有部分有机磷光材料的报道,例如专利201610563059.0,其是将磷光单体和荧光聚合在一起形成具有磷光和荧光性质的聚合物。同样,专利201610428357.9公开了带有卤素的化合物制备的具有磷光性质的聚合物。虽然已有部分有机磷光材料的报道,但是实际可应用的材料较少,仍然存在极大的研究空间,有待于进一步的开发和研究。技术实现要素:本发明的目的在于提供聚乙烯基苯磺酸或其盐作为室温磷光材料的应用。本发明首次发现聚乙烯基苯磺酸或其盐具有长寿命室温磷光发光的特性,且为纯有机物,不含有卤素等毒性高的元素,也不含有贵金属,其原料易得、成本低廉,可作为室温磷光材料进行应用。本发明的第二目的在于提供一种无卤、可水性印刷的室温磷光材料。本发明的第三目的在于提供所述无卤、可水性印刷的室温磷光材料在作为或制备发光元器件或发光材料中的应用。本发明的第四目的在于提供所述无卤、可水性印刷的室温磷光材料在制备防伪标志中的应用。本发明的第五目的在于提供所述无卤、可水性印刷的室温磷光材料在制备可水性印刷发光材料中的应用。项目阶段:成果已转化
中山大学 2021-04-10
苯乙烯空气氧化生产环氧苯乙烷和苯甲醛
环氧苯乙烷是一种重要的有机中间体,主要用于香料、制药工业、有机合成,可用作环氧树脂稀释剂、UV-吸收剂、增香剂。近年来,国内外对β-苯乙醇和医药左旋咪唑需求量急剧增长,市场上环氧苯乙烷出现供不应求的局面。
南京工业大学 2021-01-12
一种苯选择加氢制环己烯催化剂的制备方法
本发明公开了一种苯选择加氢制环己烯催化剂的制备方法。该方法将钌前驱体溶于助剂的金属盐水溶液中,将该酸性溶液装入高压釜中,在一定温度下液相氢还原一定时间后取出,倾析法水洗数次后,可以得到均一粒径的钌‑助剂苯选择加氢催化剂。将制备的钌基催化剂用于液相苯选择加氢制环己烯反应,在苯转化率为43%时,环己烯选择性可达82%。该制备方法步骤简单,原料易得,成本低廉且工艺绿色环保,具有很好的工业应用价值。
浙江大学 2021-04-13
一种苯选择加氢制环己烯催化剂的制备方法
本发明涉及氧化银/钛酸铅纳米复合材料的制备方法,该复合材料由钙钛矿型钛酸铅单晶纳米片和沉积在钙钛矿型钛酸铅单晶纳米片上的氧化银纳米粒子组成。采用巴比妥酸辅助的光沉积法制备,通过控制光照强度和光照反应时间,来调节所沉积氧化银纳米粒子的平均粒径,得到负载氧化银纳米粒子的氧化银/钛酸铅纳米复合材料。该复合材料增强了氧化银的催化活性,可用于指导氧化银与其它半导体纳米材料的复合。
浙江大学 2021-04-13
复杂多环、多甲基间苯三酚类活性天然产物全合成
开发了一条高效简洁的合成新策略,由便宜的、商业可得的原料出发,利用新开发的高対映选择性的傅克类型迈克加成反应,快速构建具有较大合成挑战性的间苯三酚二聚体,在此基础之上,利用新开发的迈克缩酮串联增环反应,立体选择性、区域选择性合成6∕6桥环和6∕5并环笼状三元环核心骨架,只需7步,即可首次完成Myrtucommuacetalone和Myrtucommuacetalone B的不对称全合成(对映选择性大于99%),它们的总产率高达31.0%,并确定了Myrtucommuacetalone的绝对构型。此外,利用氧化[3+2]环化反应,立体选择性、区域选择性合成6-5-6三环核心骨架,只需5-6步,即可首次完成Callistrilones A、C、D、E的不对称全合成(对映选择性大于99%),它们的总产率高达12.7-24.9%。以上分子的合成都没有使用任何保护基。此外,课题组对上述不对称合成的6个天然产物进行了抗菌活性实验,发现其中化合物Callistrilone E对耐药型的革兰氏阳性菌(如MRSA, VISA 和 VRE)抑制作用(0.25-2 μg/mL)强于万古霉素(2-8 μg/mL),具有成为新一代高效低毒的抗菌药物的潜力
南方科技大学 2021-04-13
一种苯丙酮类化合物的合成方法
本发明提供了一种苯丙酮类化合物的合成方法,属于有机合成技术领域,能够简化合成苯丙酮类化合物的反应步骤,并降低反应成本。所述苯丙酮类化合物的合成方法,包括:将丙基苯、有机酸、碘、叔丁基过氧化氢加入到反应釜中,在80℃‑120℃下反应8‑24小时;待反应结束后,利用有机溶剂萃取反应溶液,并经干燥处理,得到苯丙酮类化合物。本发明可用于苯丙酮类化合物的合成制备中。
青岛农业大学 2021-04-13
中国地质大学(北京)流体力学多功能实验台(第二次)竞争性磋商公告
中国地质大学(北京)流体力学多功能实验台(第二次)竞争性磋商
中国地质大学(北京) 2022-05-27
一种光反应驱动的聚轮烷状二维超分子纳米组装体系及其制备方法及应用
一种光反应驱动的聚轮烷状二维超分子纳米组装体系及其制备方法及应用,属于周期性的超分子纳米组装体领域。其构筑单元以葫芦[8]脲为主体,以三苯胺衍生物为客体。烯基吡啶盐修饰的三苯胺和葫芦[8]脲首先通过主‑客体相互作用自组装形成二维周期性聚准轮烷状超分子组装体、在可见光照的条件下,客体分子中的烯基结构会发生光二聚反应,使得原来的聚准轮烷状超分子组装体转化为更加稳定的二维周期性聚轮烷状超分子组装体、由于所得的聚轮烷状超分子组装体具有良好的稳定性和水溶性,可以作为富勒烯(C60)的捕获剂,进一步构筑功能性的超分子复合体系,并在光动力治疗方面表现了良好的效果,在医药卫生方面具有比较广阔的应用前景。
南开大学 2021-04-10
基于二维正交各向异性复合材料板的热模态对结构参数的灵敏度分析方法
本发明公开了一种基于二维正交各向异性复合材料板的热模态对结构参数的灵敏度分析方法,包括如下步骤:(1)求解考虑拉压、弯曲、剪切变形的二维正交各向异性复合材料板线性刚度矩阵K0;(2)求解热结构的初应力刚度矩阵Kσ;(3)求解考虑热应力影响的结构有限元动力学方程的目标函数,即为转化为考虑结构热应力影响的广义特征值问题;(4)基于步骤(3)中的目标函数f,采用复变函数法求解二维正交各向异性复合材料板的热模态对结构参数的灵敏度。本发明考虑了热应力对结构刚度以及结构响应(热模态)分析的影响,能够利用复变函数法分析得到精度较高的热模态对结构参数的灵敏度矩阵。
东南大学 2021-04-11
在二维拓扑材料MoTe2中发现光激发诱导的亚皮秒时间尺度结构相变
MoTe2是由MoTe6八面体结构单元构成的原子层沿c方向堆叠形成的二维材料系统,不同的堆叠方式具有不同晶体对称性。1T-MoTe2在室温时是单斜的1T’相,随着温度降低在250K时发生结构相变,转变成正交的T_d相,其中可以存在第二类外尔费米子。王楠林课题组通过实验发现高强度的近红外激光脉冲可以在亚皮秒时间尺度内将中心反演对称性破缺的T_d相驱动到具有中心反演对称的1T’相。该相变发生的最明显的特征是时间分辨的反射率变化中横向剪切振荡声子的消失和二次谐波强度的急剧下降。通过选择和改变激发脉冲的脉宽和波长,从实验上排除了激光加热效应。该项研究首次在超快亚皮秒尺度内实现了激光诱导的非加热效应引起的MoTe2晶体中第二类Weyl半金属相与正常半金属相的超快结构相变。它为超快激光控制固体的拓扑特性开辟了新的可能性,使超快激光激发的拓扑开关器件具有潜在的实际应用价值。 该工作于2019年5月22日在线发表于著名学术期刊Physical Review X(Phys. Rev. X 9, 021036 (2019)),第一作者为量子材料中心博士生张梦瑶,王楠林教授和其研究组的董涛博士是通讯作者,量子材料科学中心王健教授研究组为该工作提供了样品。该项研究得到国家自然科学基金委员会、国家重点研究开发项目等项目的支持。Figure: Pump induced SHG time traces of MoTe2 at selected fluences at T=10 K. The graph shows that as the laser fluence increases, the signal of the second harmonic of the sample drops significantly. The inset is a time-resolved schematic diagram of second harmonic detection
北京大学 2021-04-11
首页 上一页 1 2
  • ...
  • 87 88 89
  • ...
  • 105 106 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1