高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
广州佳比亚电子科技有限公司
广州佳比亚电子科技有限公司(简称佳比亚)隶属于佳比国际集团有限公司(简称佳比集团),集团旗下拥有10家全资子公司、23家办事处,并同步在海外成立了多家分公司及办事处,营销网络遍布全球。 佳比亚专注于光电音视频互联互通、为全球提供LAVC整体解决方案,是一家荣获国家认可的集研发、生产、销售、服务、项目设计于一体的“高新技术企业”,目前拥有知名品牌“JUSBE(佳比)”。 佳比亚坚持自主创新,拥有高水平专业研发团队,获得发明专利、实用新型专利、外观设计专利、软件著作权等多项自主知识产权专利技术。佳比亚还倡导环保节能理念,厉行RoHS、CE、WEEE、HF要求等国际安全环保标准,积极打造新时代绿色新型企业。 栉风沐雨多年,佳比亚不断发展壮大,产品已涵盖AI管理平台、AVC分布式智慧平台、数字会议系统、音响扩声系统、公共广播系统、灯光照明系统六大体系,不断为客户提供一站式的系统解决方案。目前,产品方案已在政企、军警、教育、文娱、医疗、体育、公共场所、指挥中心、物流、民营企业等领域广泛应用,为多个智慧教育和政企会议的调度中心、多功能厅、会议室、礼堂、多媒体教室、流动演出等提供了专业的解决方案和技术支持,以一流的品质、精湛的技术、完善的服务,迎得了广大客户的广泛认可与好评! 潮平两岸阔,风正一帆悬。展望未来,佳比亚将秉承佳比集团“以人为本、专业诚信、科技创新、追求卓越”的理念,不断融合行业资源,不断扩大全球直属办事机构规模,坚持研、产、销与服务于一体的产业生态链发展模式,力争国际先进,为全球客户提供更专业、更优质、更便捷的服务! 
广州佳比亚电子科技有限公司 2021-01-15
高纯度叶黄素和叶黄素酯
国内外已开发多种叶黄素及各种含叶黄素的保健食品。本项目创造性地采用吸附、洗脱制 备高纯度的叶黄素酯而后由高纯度的叶黄素酯皂化制备高纯度的叶黄素的生产工艺,建立一种 工艺操作简单,溶剂和淋洗液可循环套用,环境友好,收率较高,便于较大规模工业化生产提 取制备高纯度叶黄素酯和叶黄素的方法。 本技术可生产符合美国usp32标准的高纯度叶黄素 (≥90%) 和高纯度叶黄素酯,产品收率 大于60%,可做为保健食品和医药产品的原料。
华东理工大学 2021-04-11
农药氟嘧菌酯合成与制剂
氟嘧菌酯是农药杀菌剂,广泛用于治疗水稻,小麦,马铃薯,蔬菜,咖啡等作物的枯叶 病。氟嘧菌酯的商标名为,中文商品名,国外专利即将到期。 本课题组已完成氟嘧菌酯原料药合成,工艺路线先进,有成本和环保优势,利润空间大。 目前在进行制剂研究,计划进行国家批文申请。
华东理工大学 2021-04-11
特种香料乙基芳樟酯的制备
本项目产品为一种特殊的香料,具有清美而幽雅的似香柠檬油的香气,是茉莉、依兰、桂 花、紫丁香等花香型香精的主要成份,在其它许多花香型及非花香型香精中也可使用,如古龙 香型、馥奇型、玫瑰麝香型等,亦可配制人造薰衣草油、橙叶油和香柠檬油、中高档香制品及 皂用香精中。本产品通过非酯化工艺制得,合成工艺选择性好、转化率高、简单可靠、成本低 等特点,产品纯度可达96%以上。
华东理工大学 2021-04-13
羰基合成碳酸二甲酯技术
碳酸二甲酯(Dimethyl Carbonate,可简称DMC)是一种十分有用的低毒有机化工原料,分子式中带有-CO、-CH3、-OCH3和-COOCH3基团,可进行羰基化、甲基化、甲氧基化和羧基化反应,在化学合成中能很好地替代光气、硫酸二甲酯和甲基卤作羰基化剂和甲基化剂,从DMC出发可合成聚碳酸酯、异氰酸酯、氨基甲酸酯、丙二酸酯、丙二尿烷等许多重要
南京工业大学 2021-01-12
废弃油脂制备脂肪酸甲酯
餐厨废油具有鲜明的废物和资源的二重性,需要加以资源化利用,避免非 法加工为食用油而重回餐桌。餐厨废油酸值非常高,工业上一般采用两步法制 备生物柴油:第一步先采用浓硫酸催化酯化高酸值油脂,降低游离脂肪酸含 量,第二步进行液体碱催化酯交换反应,步骤繁琐,操作复杂。本成果是针对 生物柴油酯交换反应的特殊需求,采用简便路线设计合成了高活性、低成本的 固体催化剂材料。实现了化剂的回收与重复利用,在工业生产得以连续化的 同时,也降低了生产的成本。
江南大学 2021-04-13
甘油转化合成碳酸甘油酯
随着生物柴油的发展,副产粗甘油的利用成为亟待解决的问题。将甘油利用,制成具有高附加值的碳酸甘油酯成为重要的解决方案。碳酸甘油酯的高附加值来源于其广泛的用途。碳酸甘油酯因其低毒、低蒸发率、低可燃性及高稳定性被认为是一种绿色溶剂,可用于油漆、涂料、聚氨酯泡沫体和化妆品工业。江南大学自主研发了利用甘油催化合成碳酸甘油酯的合成工艺,以廉价的甘油为原料,采用高效催化剂制备碳酸甘油酯,反应条件温和、收率高并且副产物少,发展前景广阔。技术指标:本项目采用酯交换法和尿素醇解法合成碳酸甘油酯的两种工艺路线。突破了低成本、高活性固体催化剂体系的制备技术;碳酸甘油酯的收率≧95%;催化剂可回收再利用,重复使用 3-5 次,产品收率仍保持 90%以上。
江南大学 2021-04-13
环状碳酸酯的制备新工艺
基于人们对资源和环境问题的关注及实现可持续发展的社会需求,以消除污染、合理利用资源、实现可持续发展为目标的绿色化学已成为当前化学研究的热点和前沿。 二氧化碳作为一种典型的可再生资源,具有无毒、无腐蚀性、阻燃、化学惰性、大量存在于自然界中等特点和无溶剂残留而且对环境友好等优点;同时它也是一种温室气体,对它的资源化利用,还可以减轻环境负荷。回收再利用的二氧化碳主要用于生产基本化工原料及具有应用价值的绿色化工产品。目前,每年大约有110 MT(百万吨) 的二氧化碳用于化工产品的合成,如碳酸
南开大学 2021-04-14
常温常压水相电催化合成氨的研究
合成氨工业对国民经济与社会发展具有举足轻重的作用。目前,每年全球氨产量已超过亿吨,其中大部分用于农业生产以解决粮食与温饱问题,其它部分用作重要的工业原料。此外,氨还具有含氢量高(质量比达17.6%)、易液化等优点,有望成为重要的清洁储氢与储能材料,具有广阔的应用前景。然而,由于氮气分子非常稳定且难以活化,温和条件下合成氨反应难以迅速进行。工业上广泛采用的Haber-Bosch方法通过高温高压(300–500摄氏度,100–200个大气压)等苛刻条件来促使高纯氢气和氮气在铁基催化剂表面进行反应生成氨,其能量和氢气都来自于化石燃料(如甲烷等),表现出高能耗、高化石燃料消耗和高二氧化碳排放等缺点。合成氨工业消耗全球每年3–5%的甲烷与1–2%的能源供给,并产生1.6%的二氧化碳排放。寻找合适的绿色替代方案,在温和条件下实现高效、低能耗、低排放合成氨,成为亟待解决的科学挑战。 电催化氮还原反应(总反应为N2 + 3H2O  2NH3 + 1.5O2)提供了一种可持续合成氨的新路径。该反应在常温常压下即可进行,以大量易得的水与氮气(空气)作为反应原料,以可持续能源(太阳能,风能等)产生的电能作为能量来源,即可实现“零排放”合成氨。因此,不论是作为传统Haber-Bosch方法的潜在替代者还是作为新型清洁能源体系的重要组成部分,电化学合成氨技术都具有极大的发展潜力与广阔的应用前景。 然而,电化学合成氨技术仍面临重大挑战,其发展严重受制于现有催化剂非常低下的选择性与活性。若要将该技术实用化,就必须同时大幅提升催化剂的选择性与活性。然而,现有研究经验与理论表明,该反应催化剂普遍面临严重的“选择性-活性”两难问题:具有理论高活性的催化剂通常会导致激烈的析氢副反应,从而表现出低的反应选择性;而可能具有高选择性的催化剂对氮的吸附又过强,导致产物难以脱附,表现出过低的反应活性。因此,为取得电催化合成氨研究进展,大幅提高催化剂的选择性与活性,就必须突破现有理论,发展新型催化剂与催化体系。
北京大学 2021-04-11
解析氨酰tRNA合成酶新型剪接异构体结构
分析报道了人类AARS家族成员之一,Tyrosyl-tRNA合成酶 (TyrRS)中的两个新型剪接异构体。这两个剪接异构体分别去除了第2-4个和第2-3个外显子,导致其蛋白产物丧失了原始TyrRS中的催化核心和二聚体相互作用界面部分。但是,随后的生化分析表明,这两个剪接异构体仍能够形成两个具有不同构象的稳定结构。进一步的研究发现,其中一个剪接异构体由于剪接位点而形成了一个全新的Coiled-coil区域,用来形成一个新的二聚体相互作用界面;与此相反,另一个剪接异构体,由于其剪接位点导致的抑制效果,从而趋向形成单体。与大多数TyrRS在各组织细胞中均匀分布不同,这两种新的剪接异构体显示出明显的组织偏好性,其中分别在淋巴细胞中和肺中富集表达,表明它们可能由于聚合状态的差异而具有不同的生物学特性。      该研究结果阐释了人类TyrRS具有复杂的结构可塑性,在不同组织中具有不同的结构重组功能,这为今后研究AARS剪接异构体全新的生物学功能和潜在的疾病医疗效用提供了重要的参考价值。目前,aTyr制药(美国NASDAQ上市公司)正在利用相关研究成果进行转化医学研究,开发新型药物。
南方科技大学 2021-04-13
首页 上一页 1 2
  • ...
  • 11 12 13
  • ...
  • 30 31 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1