高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
电子材料及器件低频噪声-可靠性测试平台
电子材料及器件噪声-可靠性测试平台,该系统是国内外首套电子器件噪声-可靠性分析系统。采用了基于虚拟仪器的微弱噪声测试、基于噪声的可靠性诊断方法、电子器件噪声的子波分析方法等关键技术,将子波分析用于噪声-可靠性表征,可对各种电子器件和集成电路模块进行噪声测试与分析、内部潜在缺陷诊断和无损预筛选。系统可以测量电子器件的各种噪声参数,同时对噪声进行频谱分析、子波分析、集总参数分析。具有实时检测、采集、和分析, 高精度、高可靠性、智能化、小体积的优点,良好的通用性和可升级性使其同时适用于科研和生产单位。
电子科技大学 2021-04-10
基于振动噪声在线监测的汽车总成台架试验技术
成果简介:该项目利用了振动理论、声学理论、信号处理与分析技术、人工智能分析技术,可对各种类型的汽车各个总成台架试验的振动噪声进行在线监测,经过实时分析和评估,实现产品质量控制。 项目来源:合作开发 技术领域:车辆工程 应用范围:微面汽车、客车、SUV汽车、新能源汽车、轻型中型重型卡车的驱动桥、变速箱、增压器等各种总成台架生产线检验 技术水平:国内先进 现状及特点:建立了先进水平的NVH检验装置,在满足快速、准确的要求上,开发或改
北京理工大学 2021-04-14
煤矿与矿山企业噪声环境控制和治理(技术)
成果简介:该项目利用了振动理论、声学理论、振源识别与声源识别技术、振动与噪声监测与控制技术,可对各种类型的选煤(矿)厂、煤矿通风设备车间等场合振动噪声特性进行分析和评估,并经过声学布置与优化、减振降噪控制措施实施后,使煤矿与矿山企业噪声水平达到国家标准或优于国家标准。 项目来源:合作开发 技术领域:矿山工程、能源工程 应用范围:煤矿与矿山企业噪声环境设计及改造 技术水平:国内先进 现状及特点:建立了先进水平的设备振动噪声分析流程
北京理工大学 2021-04-14
一种基于噪声识别的红外图像降噪方法
本发明公开了一种基于噪声识别的红外图像降噪方法,本方法引入了噪声识别的基本思想,分别计 算了当前像素基于截尾均值的和基于梯度的隶属度,考察当前像素受噪声干扰的程度,采用联合判据判 断当前像素是否为噪声像素,最后根据判断结果进行降噪,实现对红外图像的降噪。本发明计算量小, 易于实时实现;相对传统算法能更有效的保护图像边缘与细节;在对噪声点进行降噪的过程中也考虑了 图像的纹理梯度信息,更为准确的对原有信号进行估计。
武汉大学 2021-04-13
新冠肺炎疫情发展预测模型
2020年1月25日,中山大学公共卫生学院陆家海教授联合美国哥伦比亚大学W. Ian Lipkin在bioRxiv预印版平台发表文章研究From SARS-CoV to Wuhan 2019-nCoV: Will History Repeat Itself?,通过2002-2003年SARS疫情的数据模拟了武汉新型冠状病毒2019-nCoV的流行数据。 根据此研究模型估计,2019-nCoV病例的累计计数约为SARS总数的2-3倍,预计发病高峰将在2月初或中期。在应对方面,应该限制或禁止区域性迁移,以防止超级传播者的出现和移动,同时迫切需要在全国范围内加强监控并采取有效措施来控制这种流行病。
中山大学 2021-04-10
大数据预测疫情传播研究
该项目利用国家卫健委公布的确诊病例总数数据链,以应用传播动力学为方法,以黄森忠教授建构的普适SEIR模型作为模型理论,通过“南开大学智英健康数据研究中心”开发的程序EpiSIX,分析新冠病毒肺炎疫情有关数据,并将分析结果生成可视化网页,开展疫情发展回顾、确诊病例数时序区间预测等相关工作,对疫情发展情况及疫情防控效率作出研判。 研究团队由黄森忠教授和山西大学复杂系统研究所所长靳祯教授、南京医科大学公共卫生学院彭志行副教授共同领衔,南开大学统计与数据科学学院多名年轻教师与研究生加入。研究团队从1月30日至2月14日,每3日发布一次预测,已连续发布疫情传播预测6期,并根据疫情变化,及时调整预测评价指标,其预测区域也进一步细化,由原来的对全国、湖北省、武汉市的疫情预测,拓展为对全国各省市的预测。
南开大学 2021-04-10
新冠肺炎传播风险预测分析
在2003年成功预测SARS流行趋势的基础上,西安交通大学数学与统计学院生物数学团队与陕西师范大学生物数学团队、加拿大吴建宏教授团队合作,基于新型冠状病毒的传播机理、密切跟踪隔离和封城等策略,建立了传播动力学模型,对新型冠状病毒肺炎传播风险进行了预测分析,此项研究成果“Estimation of the transmission risk of 2019-nCov and its implication for public health interventions”。 研究中利用2020年1月10日至1月22日的报告疫情数据,采用动力学模型和统计计算方法预测武汉新型冠状病毒肺炎传播的基本再生数为6.47 (95%置信区间为5.71-7.23),给出了疫情的达峰时间和峰值以及最终感染规模(若继续1月22日前的控制措施,疫情将在3月10日左右达到峰值)。研究中进一步采用似然函数方法加以验证,得到了与模型估计值一致的结果。如果续代时间大于6天或潜伏期越长,基本再生数可能更大,该结论说明了疫情传播的速度快。与23至25日的疫情数据相比,模型预测结果与报告疫情数据基本一致。 研究中进行敏感性分析,讨论了1月22日前武汉采取的防控措施的有效性以及在降低再生数中的重要作用。预测结果显示从23日起加强控制措施,报告病例数会在一个周后出现明显的下降,即加强的控制措施会在一个周后产生明显效果。进一步分析1月23日后武汉封城策略对其它地区疫情的影响,基于武汉到北京的航班、铁路等信息,计算武汉封城前后对北京疫情的影响,表明武汉封城(即北京无来自武汉输入病例)后,北京在未来7天的病例数将降低91.14%,这说明了武汉封城对全国疫情防控的关键作用。SSRN 截图 密切跟踪隔离措施的敏感性分析点击查看原文
西安交通大学 2021-04-10
故障预测与健康管理(PHM)技术
故障预测与健康管理(Prognostics and Health Management, PHM)是利用先进的传感器技术集成,借助各种算法和智能模型来诊断、预测和监测系统/子系统/设备的健康状态,并根据诊断或预测信息、可用维修资源和使用要求对装备维修活动做出适当决策,从而以最小的投入获得最佳的健康状态。 PHM是一种实施以健康为核心的装备综合管理的技术方法和系统。实现了两个转变:由传统的基于传感器的故障诊断转向基于智能系统的健康状态预测与评估;由事后维修和定期维修转向基于状态的视情维修。主要研究内容包括:飞机液压/环控/供电/蓄电池/作动器等典型机电系统的地面故障诊断与健康预测评估,机载状态监测与诊断推理,飞机机电PHM原型系统,小卫星电源系统在轨寿命预测与运行管理,船舶机电系统综合状态评估与维护维修辅助决策,测试性设计分析与试验验证等。 已在SCI/EI/ISTP检索的国际国内学术刊物和会议上发表论文100多篇,获得国家发明专利10余项。
北京航空航天大学 2021-04-13
新冠肺炎传播风险预测分析
在2003年成功预测SARS流行趋势的基础上,西安交通大学数学与统计学院生物数学团队与陕西师范大学生物数学团队、加拿大吴建宏教授团队合作,基于新型冠状病毒的传播机理、密切跟踪隔离和封城等策略,建立了传播动力学模型,对新型冠状病毒肺炎传播风险进行了预测分析,此项研究成果“Estimation of the transmission risk of 2019-nCov and its implication for public health interventions”。 研究中利用2020年1月10日至1月22日的报告疫情数据,采用动力学模型和统计计算方法预测武汉新型冠状病毒肺炎传播的基本再生数为6.47 (95%置信区间为5.71-7.23),给出了疫情的达峰时间和峰值以及最终感染规模(若继续1月22日前的控制措施,疫情将在3月10日左右达到峰值)。研究中进一步采用似然函数方法加以验证,得到了与模型估计值一致的结果。如果续代时间大于6天或潜伏期越长,基本再生数可能更大,该结论说明了疫情传播的速度快。与23至25日的疫情数据相比,模型预测结果与报告疫情数据基本一致。 研究中进行敏感性分析,讨论了1月22日前武汉采取的防控措施的有效性以及在降低再生数中的重要作用。预测结果显示从23日起加强控制措施,报告病例数会在一个周后出现明显的下降,即加强的控制措施会在一个周后产生明显效果。进一步分析1月23日后武汉封城策略对其它地区疫情的影响,基于武汉到北京的航班、铁路等信息,计算武汉封城前后对北京疫情的影响,表明武汉封城(即北京无来自武汉输入病例)后,北京在未来7天的病例数将降低91.14%,这说明了武汉封城对全国疫情防控的关键作用。SSRN 截图 密切跟踪隔离措施的敏感性分析点击查看原文
西安交通大学 2021-04-11
时空数据预测与识别技术
01. 成果简介 随着移动计算、传感器网络和科学观测设备等新技术在经济社会各领域的广泛应用,特别是监控、遥感、定位等技术的崛起,人们获得了海量的时空数据。时空数据分布于连续空间,并且随着时间动态变化,具有十分复杂的模式规律。例如,卫星遥感数据和雷达回波数据是广泛应用于气象观测和军事侦察的时空数据,在连续的卫星扫描或雷达观测过程中,形成时间轴上的一系列遥感图像或回波影像,反映三维地理空间中某种观测物理量的变化规律。视频监控、医学影像、气象预报、环境监测等很多应用领域都涉及时空数据预测和识别任务,在问题求解过程中需要同时考察时间和空间两方面因素,存在时间上的非平稳性和空间上的高维相关性两大技术难题。 本成果创新大数据深度学习技术,从复杂、海量、高维、非平稳的时空数据中识别重要的时空模式,挖掘在时间和空间上的变化规律,并对未来的时空演变趋势进行预测,形成了时空数据预测和识别的深度学习技术(如图1所示)。具体包括:·        提出卷积结构与循环结构深度融合的统一建模方法,学习高维度、非线性时空特征表示,挖掘空间关联结构与时间动态信息;·        提出时空记忆单元和回忆机制,对时空非线性、非平稳性变化进行预测学习;·        提出时空数据的迁移学习技术,降低时空分布差异,实现知识的跨时空迁移。 该技术尤其擅长捕捉高维度、非平稳时空数据的非线性变化规律,例如多物体对象在空间和时间上的“产生、消亡、运动、形变“等复杂时空数据场景。与同类技术相比,运行时间短,预测和识别精度高,在国际上处于整体先进、部分领先的水平。  图1. 用于时空数据预测和识别的循环神经网络架构及其时空记忆单元图2. 本成果技术(时空数据预测与识别)在北京交通流量预测任务上的效果02. 应用前景 该技术成熟度高,部分成果已经以线上系统的形态成功应用于中国气象部门强对流天气预报业务中,与国内现有极端天气预报业务系统相比,该技术将雷达回波外推预报准确率平均提高了45%,其中高强度雷达回波外推预报准确率提高了353%,处于国际先进水平。气象灾害中70%以上是由雷暴大风、下击暴流等强对流天气导致,致死人数占自然灾害死亡人数的93%,因此该技术在避免人员伤亡、实现财产保全、减少农业损失方面产生显著的社会经济效益。同时,该技术还可广泛应用于时空数据的预测和识别场景,在关系国计民生的气象、环保、交通等领域可以发挥重要作用,应用前景广阔。例如,采用该技术可实现未来交通流量时空分布的精准预测(如图2)。该项成果还入选了2018年首届数字中国建设峰会,为杭州G20峰会、厦门金砖会晤、中国国际进口博览会等提供了精准预报支持,获得2018年教育部技术发明一等奖和2018年中国气象学会科技进步奖一等奖。03. 知识产权 本项成果已获得发明专利授权6项。04. 团队介绍 本成果团队长期研究大数据管理与分析技术,包括分布式数据存储与查询、深度学习与迁移学习、业务过程挖掘、数据质量治理等方向。团队负责人为王建民教授、软件学院院长,机器学习小组组长为龙明盛副教授。团队在本领域发表国际学术论文100余篇,申请专利100余项,授权专利60余项。相关成果获2018年教育部技术发明一等奖、2018年中国气象学会科技进步一等奖、2014年国家科技进步二等奖、2013年中国电子学会科技进步一等奖、2012年教育部科技进步一等奖等奖励。05. 合作方式 技术许可 / 软件服务。
清华大学 2021-04-13
首页 上一页 1 2
  • ...
  • 8 9 10
  • ...
  • 49 50 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1