高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
北京交通大学电机状态预测可视化系统项目公开招标公告
北京交通大学电机状态预测可视化系统项目 招标项目的潜在投标人应在线上报名(邮件)获取招标文件,并于2022年07月05日 09点30分(北京时间)前递交投标文件。
北京交通大学 2022-06-14
基于卷积神经网络的城市轨道交通乘客拥挤程度检测方法
本发明公开了一种基于卷积神经网络的城市轨道交通乘客拥挤程度检测方法,首先对待检测视频进行预处理,分段并提取运动残差图像,将原始图像与运动残差图像组合作为卷积神经网络算法的输入,建立至少包含一个卷积层和最大池化层的特征提取块,处理并计算原始图像和运动残差图像中包含的人群状态特征,再将人群状态特征和运动特征结合,构建至少包含一个卷积层、最大池化层和全连接层的特征融合块,进行融合处理,同时构建分类器,使用预制的带有拥挤程度标签的训练集对卷积神经网络进行训练,使分类器对待测视频中的乘客拥挤程度进行正确检测,更加全面的表征监控视频中的客流状况,实现拥挤程度的检测,提高了算法检测的准确率。
东南大学 2021-04-13
高速公路与关联城市快速路交通信息共享与协同控制系统
该项目是863计划项目,现处于实验室研究阶段。项目成果受专利保护。 1、项目概述 本项目针对高速公路进出城路段交通拥堵严重、事故频发,以及高速公路监控系统和城市快速路监控系统各自为政、协同性差的普遍现象,构建了基于互联网的分布式交通特征信息共享平台,实现了不同监控系统的信息共享;借助信息共享平台,系统分析了结合部的动态交通特征,提出了适应不同交通条件的短时交通特征预测技术;采用分层递阶控制和神经网络控制的方法,研发了多匝道的协同控制系统软件,并实现了结合部道路交通系统的微观仿真。 2、技术创新点 在监控系统的信息共享研究方面,初步建立了交通特征信息共享的平台,其中对异构监控系统之间交通特征级信息共享的内容和模式进行了系统分析,对异构信息进行了融合处理,实现了特征级信息的发布。 在短时交通特征预测研究方面,已对京津塘高速公路及北京市快速环路监控系统的海量交通流实测数据进行了特征与关联分析,完成了短时交通特征的预测,并实现了交通拥挤的预判。 在结合部的协同控制方面,利用模糊神经网络的建模和学习方法,对高速公路多匝道控制系统算法进行设计,并进行了控制效果仿真。   3、能为产业解决的关键技术 (1)基于服务水平的特征级交通动态信息融合技术 针对目前高速公路和城市快速路监控系统所采集的交通流基础数据格式和像素级融合技术都有所不同,控制目标参数不统一的现实情况,项目提出的交通特征信息共享平台首先要处理现有高速公路和城市快速路服务水平判定标准不统一的问题,其次需要解决区域交通监控系统的特征级数据融合问题,寻求基于服务水平的动态信息融合技术和方法。 (2)交通特征信息共享平台的设计技术 针对集中式信息共享平台投资大、实施困难的缺点,提出采用成熟的互联网技术,以及分布式技术建立交通信息共享平台,为异构监控系统的信息共享模式提供了一种新的建设思路。不需要增加额外的硬件投资、操作方便,就现有的管理体制来说,也容易实现。 (3)基于关联分析和智能控制技术的短时交通特征预测模型 将时间序列理论与关联理论引入交通状态分析,并根据不同交通条件建立的短时交通预测模型,在很大程度上提高了预测方法的实时性、准确性和可靠性,有利于预测技术的应用和推广。 (4)高速公路和城市快速路结合部实现协同控制的关键技术 基于区域道路交通网络动态信息采集系统数据资源的综合利用与共享,在交通服务水平判定技术的支持下,运用系统论、控制论的思想以及智能交通系统工程的理论方法,实现高速公路和城市快速路结合部的协同控制。 4、相关的行业发展水平,以及同类技术产品或成果比较 目前,我国已建设的交通信息系统中,各子系统基本上是作为一个个分支存在的,不仅子系统自身的数据尚未实现充分融合,集成度很低,而且系统之间存在行政分割问题,异构情况严重;在信息共享平台设计上,大都采用集中式为主,需要新建一个监控总中心,投资大,操作困难。 与本项目所提出的预测思路及预测方法相比,现有预测方法的适用性方面还存在不少缺陷。 目前,我国高速公路和城市快速路交通控制所采取的区域控制策略尚未形成较成熟的控制模式,高速公路和城市快速路的协同控制模式更是处于起步阶段,尚未形成成熟的技术产品。 应用范围: 本课题针对的主要对象是高速公路与城市快速路的结合部,课题研究成果不仅充分利用了现有的道路监控系统硬件资源,节省了建设成本,而且可以满足结合部的交通控制与管理需要,具有较强的应用和推广价值。在实际的应用和推广中,还需进一步扩充和细化协同控制目标,优化大范围内的多匝道协同控制模型及其算法,并对具体的控制策略和控制设施进行详细设计,以提升协同控制的实际效果。 预期效果: 运用系统论和其他相关领域研究的最新成果,探索建立区域高速公路和城市快速路交通信息共享平台的新思路和新方法,并在系统平台的基础上研究协同控制的策略和方法,并形成整套协同控制系统算法和软件。在实践中,研究成果能够得到较好的应用,并且能够部分解决高速公路和城市快速路结合部的交通问题。
北京交通大学 2021-04-13
北京市科学技术委员会、中关村科技园区管理委员会关于印发 《北京市科学技术奖励办法实施细则》的通知
为做好本市科学技术奖励工作,进一步规范北京市科学技术奖(以下简称市科学技术奖)的提名、受理、评审、授予等各项活动,根据《北京市科学技术奖励办法》(以下简称《办法》),制定本细则。
北京市科学技术委员会、中关村科技园区管理委员会 2024-11-29
基于AI技术的通用网关及数据管理平台
本项目研发了一套完整的现场数据采集服务支撑技术,提供了数据采集集成服务的商业运营新模式。针对工业互联网建设过程中普遍存在的现场数据采集需求,整合了综合感知、AI智能处理、网络安全传输、数据质量管理和标准化输出等多个环节,把经过质量分析和标准化处理后的实时数据,作为产品对接到工业互联网应用平台的数据池,供后续数据处理和应用分析。整套技术包括4大模块:1)智能网关:基于具有AI能力CPU的智能网关,完成对多种传感信息的有效采集,并安全传输给数据前置云服务器;重点研究基于小目标的AI图像分类算法。2)AI模型管理系统:实现对智能网关中视觉AI感知中的模型计算和管理,该系统可以统一部署也可以部署的用户指定的内网服务器中。3)数据管理和标准化处理:数据有效性管理、数据质量评估、数据标准化和数据安全机制。4)智能运维:开发一套基于移动APP的智能运维系统,为运维人员提供有效帮助,提高效率、降低成本、保证系统运行质量和数据的有效性。 如图所示,项目完成了对于现场数据的传感、传输、管理、输出和设备运维等一系列工程实现。应用范围: 1、智能网关: 开发基于具有AI能力CPU的智能网关,完成对多种传感信息的有效采集,并安全传输给数据前置服务器。 综合接入能力: 包括有线传感器和特定的无线传感器、与现有系统的对接 有效感知能力: 实现基于图像的AI视觉感知能力,重点研究基于小目标的图像分类算法 安全传输能力: 提供4G、5G、NB-IOT的上行传输模块化替换 提供安全的加密手段,保证数据安全 现场调试配置能力: 具有现场WiFi调试功能,方便安装和运维人员现场配置和检测 软件和通信标准版本现场升级 2、AI模型管理系统 需要实现对智能网关中视觉AI感知中的模型计算和管理,该系统可以统一部署也可以部署的用户指定的内网服务器中。 样本管理能力 原始样本管理、样本实例库分类和管理、检测样本管理等 模型计算和管理 算力管理:对算力的统筹,外部算力的对接等 算法管理:自主开发算法的管理和调动,外部算法的调用和对接 模型管理:包括模型的功能属性和已经应用的情况的统计分析 设备管理 设备的AI模型配置能力、AI推演过程的监控、AI推演结果的跟踪采集和分析 3、数据管理和标准化处理 数据有效性管理 监测数据是否按时上传、上传数据是否符合要求、是否为非法数据 告警输出:把告警信息进行分类,并推送给相关的运维系统 数据质量评估 按照标准对现场采集数据进行多维度的质量分析,为后续数据应用提供参考依据 数据标准化 格式标准化:完善采集时间、地点、单位等属性, 输出标准化:按照标准协议与工业互联网平台数据池进行对接 数据安全 区域性部署:可以应用户要求部署在其内网 并行部署:可以通过并行部署,网关上联多个服务器,确保用户的可靠性需求 数据回滚能力:可以应工业互联网平台要求对数据进行一定期限内的回滚,保证数据在一定时间段内不丢失 4、智能运维 开发一套基于移动APP的智能运维系统,为运维人员提供有效帮助,提供效率、降低人员成本、保证系统运行质量和数据的有效性。 运维人员管理 对运维人员的信息、定位、工作状况管理 巡检任务管理 对部署的硬件和相关工作环境定期巡查的任务制定、下发、执行过程和结果的记录和管理 临时故障处理 对系统自动告警和现场突发状况的应急处理能力,包括人员调配、处理流程提示和建议、相关情况处置参考案例、后续统计追踪等。网关核心板实物照片
北京邮电大学 2021-04-10
选矿厂生产统计计算机管理系统
项目简介:《选矿厂生产统计计算机管理系统研究》通过湖北省科技厅组织的鉴定,其科研成果处于国内领先水平。 技术特点:本课题以大冶铁矿厂为实例,利用当前流行的Microsoft Visual Basic6.0开发选矿厂生产统计计算机管理系统软件,该系统解决了多金属选厂报表金属量不易平衡的问题,具有创新性。用户只需一次性输入原始数据,相互关联的生产日报表、周报表、月报表和年报表将自动生成,生产日报表可当天上报。企业领导、工程技术人员、管理工作者和统计分析人员可根据工作需要任意浏览、调用、打印各种报表,有利于正确指导现场操作、生产调度、组织管理和领导决策。应用领域:该系统既针对性,又有通用性,便于计算机管理网络化。可在全国同类矿山企业中推广使用,具有广阔的应用前景和良好的社会、经济效益。
武汉工程大学 2021-04-11
基于大数据的能源互联网能量管理系统
随着电网数据规模越来越大,所蕴含的价值也越来越多。清华大学信研院研发了基于机器学习方法的能源互联网能量管理系统,主要功能为对电网的稳定性进行预测和可视化。系 统分为训练部分和预测部分。训练部分通过历史数据进行机器学习,建立一个电压稳定性的 分类器。分类器训练完成后,再对新增的未知数据进行预测。训练部分主要分为特征提取、 类别标记、特征压缩、分类器类型选择。预测部分主要分为分类器数据启动阶段和预测输出 阶段。本系统提出利用机器学习方法对电网电压稳定性进行预测,进一步综合多个节点给出 电网态势感知的评估结果。在训练每一个节点分类器的时候,本系统将特征选取的时段和预 测时间节点拉开,形成一种延时的预测方法,本发明对复杂系统有着更好的还原效果。2 应用说明本系统实施电压稳定性预测的具体步骤为:步骤 1:通过部署在关键测点的同步相角测量单元 PMU 采集电网实时数据,所述 实时数据包含电网中每个关键测点的电压 U、 有功 P、无功 Q、电流 I;分别计算 U 的衍 生量 dU/dt,Q 的衍生量 dQ/dt,电压的变化 量比上无功的变化量的衍生量 dU/dQ,用这 些衍生量作为特征,来表征量的时间变化速 率;步骤 2:对步骤 1 中提取的特征进行数 据降维与压缩;根据特定时刻电压 U 是否恢 复到标准值的 0.8 倍来区分每组样本组是否 稳定,用 0 标记稳定,用 1 标记不稳定;步骤 3:选择分类器,建立一个电压稳 定性的分类器;步骤 4:训练分类器;当分类器训练完 成后,将训练好的参数储存起来;步骤 5:进入预测部分的数据启动阶段, 填充特征矩阵,没有输出;步骤 6:把多个节点的特征按照顺序排列,形成特征矩阵;特征矩阵填充完成后, 根据分类器给出的预测结果;特征时段向前滑动,最初的特征被抛弃,新特征补充在队尾, 分类器持续给出预测结果;步骤 7:每隔一定时间间隔 ,要把新收集来的数据与以前的数据一起,重新回到步骤 4 训练分类器,更新参数。在具体系统搭建过程中,我们充分利用现有机器学习平台。其中 Hadoop 的文件管理系统 HDFS 负责数据存储;Spark 负责模型训练;Storm 负责在线预测;Kafka 负责在 Storm 和Hadoop 之间传递更新后的模型参数。
清华大学 2021-04-11
基于AI技术的通用网关及数据管理平台
本项目研发了一套完整的现场数据采集服务支撑技术,提供了数据采集集成服务的商业运营新模式。针对工业互联网建设过程中普遍存在的现场数据采集需求,整合了综合感知、AI智能处理、网络安全传输、数据质量管理和标准化输出等多个环节,把经过质量分析和标准化处理后的实时数据,作为产品对接到工业互联网应用平台的数据池,供后续数据处理和应用分析。整套技术包括4大模块:1)智能网关:基于具有AI能力CPU的智能网关,完成对多种传感信息的有效采集,并安全传输给数据前置云服务器;重点研究基于小目标的AI图像分类算法。2)AI模型管理系统:实现对智能网关中视觉AI感知中的模型计算和管理,该系统可以统一部署也可以部署的用户指定的内网服务器中。3)数据管理和标准化处理:数据有效性管理、数据质量评估、数据标准化和数据安全机制。4)智能运维:开发一套基于移动APP的智能运维系统,为运维人员提供有效帮助,提高效率、降低成本、保证系统运行质量和数据的有效性。 如图所示,项目完成了对于现场数据的传感、传输、管理、输出和设备运维等一系列工程实现。
北京邮电大学 2021-05-09
智能工厂——三维可视化综合管理平台
"该项目基于虚拟现实技术,还原现场真实三维场景,综合集成物联网、大数据等现代信息技术,在“真实”的三维环境中,实现数据的“所见即所得”及各种交互式应用。三维可视化综合管理平台包括: 1)三维数字化工厂;2)三维可视化生产运行管理系统;3)三维可视化设备管理系统——特种设备管理系统;4)三维可视化设备管理系统——管线管理系统;5)三维可视化设备管理系统——通用设备管理系统;6)设备健康管理——设备运行仿真与优化,设备运行状态监测,故障诊断与预测;7)三维可视化安全管理——三维数字化应急预案,应急预案模拟演练,警示教育与事故再现;8)交互式技能培训。 “三维可视化综合管理平台”用户已达20多家,其中很多是长期客户,用户涵盖石油、化工、钢铁、电力、铁路、水利、民航、机械制造、军事、教育、智慧城市(园区)等行业,合同额1000多万元。随着“中国制造2025”战略的实施,智能制造、智能工厂建设已开始全面启动,“三维可视化综合管理平台”的市场前景将越来越广阔。 "
山东大学 2021-04-10
适配器和LED照明AC/DC电源管理芯片
LED半导体照明由于环保、寿命长、光电效率高等众多优点,已经成为主要的照明方式。LED一般只能在是2~3伏低电压工作,必须要设计复杂的电源转换电路,不同用途的LED灯配备不同的电源适配器。LED芯片和电源装在一起,一般空间狭小,散热条件差,驱动电源的质量直接影响半导体照明的使用寿命。对驱动电源的要求包括转换效率、有效功率、恒流精度、电源寿命、电磁兼容等。实际应用过程中,因此必须要综合考虑这些因数。LED驱动电源面临几个挑战:首先是驱动电路寿命;其次是转换效率,尤其大功率应用中,可减少热耗散;再次是调光功能;最后是控制成本。
电子科技大学 2021-04-10
首页 上一页 1 2
  • ...
  • 76 77 78
  • ...
  • 114 115 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1