高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种抗呼吸道病毒的中药组合物及其制备方法和应用
【发 明 人】范欣生;俞晶华;唐于平;周玲;段金廒【技术领域】本发明涉及一种中药复方的抗呼吸道病毒的有效部位及其制备方法,以及在制备治疗抗呼吸道病毒中的应用,属于中医药领域中中药复方有效部位提取与应用技术领域。【摘要】一种中药复方抗呼吸道病毒的有效部位及制备方法。它是以甘草、麻黄、苦杏仁、半夏、生石膏、细茶、五味子按一定重量份配比的原料药用水蒸气蒸馏法提取的中药复方挥发油部位、萃取法提取的乙酸乙酯部位。本发明具有制备工艺简单、重现性好、成本低的优点,同时较大限度地提高复方中有效成分的提取率。经体外试验证明本发明提供的中药复方挥发油部位、乙酸乙酯部位具有较强的抗甲型流感病毒作用;乙酸乙酯部位具有较强的抗合胞病毒作用;挥发油部位具有抗乙型流感病毒作用。本发明的中药复方挥发油部位、乙酸乙酯部位可用于制备防治上呼吸道相关病毒感染的中药新药,为利用具有传统治疗优势的中药复方制备抗呼吸道病毒药物提供了新的选择。
南京中医药大学 2021-04-13
婴幼儿肺炎疫苗: 呼吸道合胞病毒 F 蛋白与 Fc 融合蛋白
已有样品/n呼吸道合胞病毒(RSV)是引起婴幼儿肺炎的首要病因,福尔马林灭活疫苗产生低中和活性抗体以及偏向Th2型免疫应答,反而引起“疫苗依赖的感染增强”,因此,国内外均无疫苗上市。本发明采用抗原抗体免疫复合物的新思路,提供了一种RSV抗原蛋白F与抗体恒定区Fc的融合蛋白(F-Fc)的制备方法,及其作为RSV亚单位疫苗的应用。融合蛋白经粘膜途径(滴鼻)免疫,使用安全方便,并可在呼吸道诱导强的体液免疫和偏向Th1型细胞免疫。
中国科学院大学 2021-01-12
人体解剖图谱人体解剖学彩色图谱人体解剖挂图呼吸系统挂图
呼吸系统挂图(12张)   第二版《人体解剖挂图》在第一版的基础上,重新设计、增绘、修改近80幅图。新增绘的内容:主要是肌肉部分,从而将骨、骨连结和肌肉编绘成一个完整的运动系统;另外,在消化、呼吸、泌尿生殖和局部解剖等系统中也增绘了若干幅新图。全套挂图仍按运动系统、消化系统、呼吸系统、泌尿生殖系统、循环系统、神经系统、内分泌系统、感觉器和局部解剖等9个部分,进行编排包装,共计260幅。 为了节省篇幅,本版挂图仍对某些内容采用一图多用的方法予以展示,例如部分血管和周围神经部分,即未作独立的完整系统进行编绘,而是放在“局部解剖”中予以综合展示。因此,使用内分泌系统挂图时,请按读者上述编排,依教学需要进行选图。   主要内容: 1、呼吸系统概观 2、喉软骨 3、喉的软骨及韧带(1) 4、喉的软骨及韧带(2) 5、喉肌 6、喉腔及声带 7、喉内腔和喉口 8、气管、支气管及肺段 9、肺的内侧面 10、肺和胸膜 11、胸膜及肺的体表投影(1) 12 胸膜及肺的体表投影(2)
上海欣曼科教设备有限公司 2021-08-23
【高教前沿】东北师范大学副校长邬志辉:人工智能赋能教师教育,实现教师教育范式的全面变革
在人工智能的加持下,教师准入不再是死板的应试,而是通过虚拟实践考核实际教学能力和教育智慧。
中国教育在线 2025-07-10
呼吸道传染病突发事件应急处置及效果的虚拟仿真实验
东南大学目前根据应用系统动力学模型和虚拟仿真技术对呼吸道传染病突发事件应急处置的过程进行仿真模拟,通过事件发现与报 告、流行病学调查、事件现场处置、事件总结报告的四个阶段以及实时的结局监测,突出以公共卫生应急核心胜任 力为导向,培养学生熟悉应急处置过程中的15个知识点和掌握应急处置的14种能力。学生通过虚实结合,反复训 练利用或设计实验,从而提高学生对突发卫生公共事件现场的处置能力,国家虚拟仿真实验教学项目共享平台,达 到27433次的浏览量,有7851人进行了实操训练,覆盖了全国各地二十余所高等院校。
东南大学 2021-04-10
家具用人工林木材功能性改良新技术
本项目针对人工速生林木材密度小、强度低的特点,研究开发出木材化学改性与干燥一体化工艺技术及装备。本技术能够大幅度提高速生材性能,同时解决了常规木材改性技术中改性剂浸透困难、环保性差,改性材功能单一、尺寸小,无法满足工业生产要求等问题;解决了传统木材改性技术工艺“先干燥-再浸渍处理-再二次干燥”的能耗高的问题。本项目技术获国家发明专利授权2项,已在多家企业应用。
北京林业大学 2021-02-01
人工智能技术赋能5G超声设备
新冠肺炎常规通过病史、CT等进行病情评估,但重症病房应用超声不便,还需要评估重症患者的心脏等多器官,然而操作者绝大多数不是专业超声医生,这为如何在治疗重症患者的过程中更好地发挥超声的作用提出了难题。深圳国际研究生院袁克虹团队与深圳华声医疗技术股份有限公司合作,用人工智能技术赋能5G超声设备,增添采集心肺关键标准切面的导航以及关键参数的自动测量等功能,辅助医生对重症病人进行动态评估和治疗。 袁克虹团队与深圳华声医疗技术股份有限公司1月中旬组成研发团队,在已有合作工作的基础上,针对新冠肺炎重症患者临床超声的迫切需求开展联合攻关,半个月就获得了较好的成果。该技术从2月初开始在武汉协和西院等多家医院使用,在一定程度上辅助了医生对重症患者进行疾病的动态评估和治疗指导。 目前该技术正由国家感染性疾病临床研究中心(深圳市第三人民医院)牵头开展进一步研究,将完善和改进现有功能,优化远程诊断流程,实现超声为医生治疗重症患者提供更智能、更可靠、更专业的帮助。
清华大学 2021-04-10
用于种子捕食追踪的人工种子系统建立
动物捕食植物种子(下称种子捕食)是动植物协同进化的重要方面。动物捕食植物种子可影响植物种群更新和繁衍;植物通过调节各种性状,如种子大小、蛋白质含量,调节动物捕食行为。植物性状对种子捕食调节能力的评估对理解动植物协同进化具有重要意义。 因此,建立一种用于种子捕食追踪的人工种子系统,对于种子捕食追踪及相关研究,理解动植物协同进化,促进野生植物尤其是珍稀濒危植物保护具有重要的作用。
辽宁大学 2021-04-11
人工智能药物筛选、药物设计及毒性预测算法
本成果采用最新的深度学习和分子模拟算法,结合新一代分子特征化方法,开发了多种计算机模型,可用于药物开发中的多个阶段,为药物的快速设计开发提供一个完整的基于人工智能的解决方案。成果:1.药物毒性预测方法:传统的化合物毒性检测技术一般需要使用生化试验、细胞实验、甚至动物模型,这些方法不仅耗费大量时间,而且成本很高。使用计算模型进行有机化合物的毒性预测,所需投入较少,但产出巨大。特别是基于化合物的物理化学和结构特性的计算模型,甚至能够在化合物合成之前就对其进行预测,大大提高了效率,使其越来越受到欢迎。在进行体外和体内试验之前先使用计算机模型对化合物进行大规模的毒性筛选,能够更好地解决候选药物具有毒性的问题。我们建立了一套新的基于多种分子指纹和机器学习算法的化合物毒性预测集成学习算法,运用此集成学习算法建立了新的有机化合物致癌性、致突变性和肝毒性预测模型。我们分别建立了名为CarcinoPred-EL (http://112.126.70.33/toxicity/CarcinoPred-EL/, 致癌性预测)、MutagenPred-EL (http://112.126.70.33/toxicity/MutagenPred-EL/, 致突变性预测)、LiverToxPred-EL (http://112.126.70.33/toxicity/LiverToxPred-EL/, 肝毒性预测)的预测服务器,这些服务器能够为使用者提供更高效更便捷的预测技术服务。自2017年服务器发表起,我们已为国内外药物分子设计研究者提供了5000多次共计超过20多万个化合物的毒性预测服务。在有机化合物毒性预测研究方向,我们主要完成了化合物的细胞毒性、心脏毒性、生殖毒性、血脑屏障透过性、水生生物毒性预测模型,以及糖尿病早期筛查模型的开发,正在进行P450酶阻滞剂性预测模型、基于图神经网络的毒性预测算法研究、基于分子对接的化合物毒性预测研究等。相关研究成果已发表多篇学术论文(Zhang L., et al. Scientific Reports, 2017, 7: 2118. WOS被引次数80,ESI 1%高被引论文;Ai H., et al. Toxicological Sciences, 2018, 165: 100-107;Yin Z., et al. Journal of Applied Toxicology. 2019, 39(10): 1366-1377;Ai H., et al. Ecotoxicology and Environmental Safety. 2019, 179: 71-78;Liu M., et al. Toxicology Letters. 2020, 332: 88-96;Feng H., et al. Toxicology Letters. 2021, 340: 4-14;Li S. et al. Interdisciplinary Sciences: Computational Life Sciences. 2021, 13: 25-33.)致癌性预测服务器首页致癌性预测结果页相关综述对本服务器的介绍RF-hERG-Score预测药物引起的hERG相关心脏毒性2.药物设计方法:在计算机上对药物靶点和药物分子的结构和活性建模,计算药物与靶点之间的相互作用关系,从而设计出具有治疗作用的药物。计算机辅助药物设计可以为药物设计各阶段的实验方案提供有意义的指导,减少需要通过实验评估的候选药物的数量,从而加快新药研发速度。我们应用分子对接、分子动力学模拟、自由能计算、机器学习等方法研究流感病毒等重要疾病的计算机辅助药物设计、并开发更有效的计算机辅助药物设计方法。在计算机辅助药物设计研究我们主要完成了流感病毒M2质子通道蛋白抑制剂虚拟筛选方法研究,正在进行先导化合物生成模型研究、基于机器学习的虚拟筛选打分函数算法开发、SARS-CoV-2病毒S蛋白与受体相互作用及药物设计研究。特异性重打分函数显著虚拟筛选性能显著较高筛选出两个候选抑制剂3.药物靶点识别方法:长非编码RNA(lncRNA)是一种长度在200nt至100,000nt之间的非编码RNA,是转录物的主要成分。研究表明lncRNA在许多生物学和病理学过程中起着重要作用。lncRNA起作用的重要途径是与其靶蛋白结合。lncRNA-蛋白质相互作用的实验研究需要大量资源。累积的实验数据使得通过计算方法预测lncRNA-蛋白质相互作用成为可能。我们使用各种数学建模和机器学习方法开发了几种用于预测lncRNA-蛋白质相互作用的新模型。这些模型命名为:RWLPAP(随机游走),LPI-NRLMF(邻域正则化逻辑矩阵分解),IRWNRLPI(集成随机游走和邻域规则化Logistic矩阵分解),LPI-BNPRA(双向网络投影推荐算法),LPI-ETSLP(基于特征值变换的半监督链路预测),HLPI-Ensemble(集成学习)。在交叉验证中,我们的模型获得了较好的预测性能。lncRNA-蛋白质相互作用预测模型的性能比较lncRNA-蛋白质相互作用预测服务器相关软件著作权:
辽宁大学 2021-04-10
人工智能药物筛选、药物设计及毒性预测算法
本成果采用最新的深度学习和分子模拟算法,结合新一代分子特征化方法,开发了多种计算机模型,可用于药物开发中的多个阶段,为药物的快速设计开发提供一个完整的基于人工智能的解决方案。 成果:1.药物毒性预测方法:传统的化合物毒性检测技术一般需要使用生化试验、细胞实验、甚至动物模型,这些方法不仅耗费大量时间,而且成本很高。使用计算模型进行有机化合物的毒性预测,所需投入较少,但产出巨大。特别是基于化合物的物理化学和结构特性的计算模型,甚至能够在化合物合成之前就对其进行预测,大大提高了效率,使其越来越受到欢迎。在进行体外和体内试验之前先使用计算机模型对化合物进行大规模的毒性筛选,能够更好地解决候选药物具有毒性的问题。我们建立了一套新的基于多种分子指纹和机器学习算法的化合物毒性预测集成学习算法,运用此集成学习算法建立了新的有机化合物致癌性、致突变性和肝毒性预测模型。我们分别建立了名为CarcinoPred-EL (http://112.126.70.33/toxicity/CarcinoPred-EL/, 致癌性预测)、MutagenPred-EL (http://112.126.70.33/toxicity/MutagenPred-EL/, 致突变性预测)、LiverToxPred-EL (http://112.126.70.33/toxicity/LiverToxPred-EL/, 肝毒性预测)的预测服务器,这些服务器能够为使用者提供更高效更便捷的预测技术服务。自2017年服务器发表起,我们已为国内外药物分子设计研究者提供了5000多次共计超过20多万个化合物的毒性预测服务。在有机化合物毒性预测研究方向,我们主要完成了化合物的细胞毒性、心脏毒性、生殖毒性、血脑屏障透过性、水生生物毒性预测模型,以及糖尿病早期筛查模型的开发,正在进行P450酶阻滞剂性预测模型、基于图神经网络的毒性预测算法研究、基于分子对接的化合物毒性预测研究等。相关研究成果已发表多篇学术论文(Zhang L., et al. Scientific Reports, 2017, 7: 2118. WOS被引次数80,ESI 1%高被引论文;Ai H., et al. Toxicological Sciences, 2018, 165: 100-107;Yin Z., et al. Journal of Applied Toxicology. 2019, 39(10): 1366-1377;Ai H., et al. Ecotoxicology and Environmental Safety. 2019, 179: 71-78;Liu M., et al. Toxicology Letters. 2020, 332: 88-96;Feng H., et al. Toxicology Letters. 2021, 340: 4-14;Li S. et al. Interdisciplinary Sciences: Computational Life Sciences. 2021, 13: 25-33.) 致癌性预测服务器首页 致癌性预测结果页 相关综述对本服务器的介绍 RF-hERG-Score预测药物引起的hERG相关心脏毒性 2.药物设计方法:在计算机上对药物靶点和药物分子的结构和活性建模,计算药物与靶点之间的相互作用关系,从而设计出具有治疗作用的药物。计算机辅助药物设计可以为药物设计各阶段的实验方案提供有意义的指导,减少需要通过实验评估的候选药物的数量,从而加快新药研发速度。我们应用分子对接、分子动力学模拟、自由能计算、机器学习等方法研究流感病毒等重要疾病的计算机辅助药物设计、并开发更有效的计算机辅助药物设计方法。在计算机辅助药物设计研究我们主要完成了流感病毒M2质子通道蛋白抑制剂虚拟筛选方法研究,正在进行先导化合物生成模型研究、基于机器学习的虚拟筛选打分函数算法开发、SARS-CoV-2病毒S蛋白与受体相互作用及药物设计研究。 特异性重打分函数显著虚拟筛选性能显著较高 筛选出两个候选抑制剂 3.药物靶点识别方法:长非编码RNA(lncRNA)是一种长度在200nt至100,000nt之间的非编码RNA,是转录物的主要成分。研究表明lncRNA在许多生物学和病理学过程中起着重要作用。lncRNA起作用的重要途径是与其靶蛋白结合。lncRNA-蛋白质相互作用的实验研究需要大量资源。累积的实验数据使得通过计算方法预测lncRNA-蛋白质相互作用成为可能。我们使用各种数学建模和机器学习方法开发了几种用于预测lncRNA-蛋白质相互作用的新模型。这些模型命名为:RWLPAP(随机游走),LPI-NRLMF(邻域正则化逻辑矩阵分解),IRWNRLPI(集成随机游走和邻域规则化Logistic矩阵分解),LPI-BNPRA(双向网络投影推荐算法),LPI-ETSLP(基于特征值变换的半监督链路预测),HLPI-Ensemble(集成学习)。在交叉验证中,我们的模型获得了较好的预测性能。 lncRNA-蛋白质相互作用预测模型的性能比较 lncRNA-蛋白质相互作用预测服务器相关软件著作权:
辽宁大学 2021-05-10
首页 上一页 1 2
  • ...
  • 16 17 18
  • ...
  • 335 336 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1