高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
基于人工智能的视觉智能感知平台
本项目研究面向成渝地区双城经济圈大数据智能产业需求,尤其是对智能制造、公共安全场景提供高效的视频流在线推理和管理平台,研发了一个通用性的智能中台架构,支持视频流和智能模型模块化管理,支持全程可视化操作交互式界面,支持视觉智能感知模型在线推理快速部署,支持感知与识别结果实时推送、预警和报警。
重庆文理学院 2025-02-21
RealSafe人工智能安全平台
业界首个针对AI在极端和对抗环境下的算法安全性检测与加固的工具平台“对抗样本”成新型病毒,算法安全问题亟待解决随着人工智能技术的高速发展,人工智能在诸多场景正逐渐替代或协作着人类的各种劳动,它们可以成为人类的眼睛、耳朵、手臂甚至大脑。其中,机器视觉作为AI时代的基础技术,其背后的AI算法一直是各科技巨头和创业公司共同追逐的热点。然而在机器视觉诸多主流应用场景的背后,往往也藏着由技术性缺陷导致的算法安全风险。例如,在一些训练数据无法覆盖到的极端场景中,自动驾驶汽车的识别系统可能出现匪夷所思的决策,危害乘车人的人身安全。从2016年至今,Tesla、Uber等企业的辅助驾驶和自动驾驶系统就都曾出现过类似致人死亡的严重事故。并且这类极端情形也可能被恶意制造并利用,发动“对抗样本攻击”,去年7月,百度等研究机构就曾经通过3D技术打印出能让自动驾驶“无视”的障碍物,让车辆面临撞击风险。而以上攻击之所以能成功,主要是机器视觉和人类视觉有着很大的差异。因此可以通过在图像、物体等输入信息上添加微小的扰动改变(即上述故意干扰的“对抗样本”),就能导致很大的算法误差。此外,随着AI的进一步发展,AI算法模型将运用金融决策、医疗诊断等关键核心场景,这类AI“漏洞”的威胁将愈发凸显出来。近年来,包括清华大学人工智能研究院院长张钹院士、前微软全球执行副总裁沈向洋等均提倡要发展安全、可靠、可信的人工智能以及负责任的人工智能,其中AI的安全应用均是重点方向。而且,AI安全作为新兴领域,在开源社区、工具包的加持下,对抗样本等攻击手段日益变得复杂,相关防御手段的普及和推广却难以跟上。并且对抗样本等算法漏洞检测存在较高的技术壁垒,目前市面上缺乏自动化检测工具,而大部分企业与组织不具备该领域的专业技能来妥善应对日益增长的恶意攻击。从安全测评到防御加固,RealSafe让AI更加安全可控就如网络安全时代,网络攻击的大规模渗透诞生出杀毒软件,RealAI团队希望通过RealSafe平台打造出人工智能时代的“杀毒软件”,帮助企业高效应对人工智能时代下算法漏洞孕育出的“新型病毒”。目前,RealSafe平台主要支持两大功能模块:模型安全测评、防御解决方案。其中,模型安全评测主要为用户提供AI模型安全性评测服务。用户只需接入所需测评模型的SDK或API接口,选择平台内置或者自行上传的数据集,平台将基于多种算法生成对抗样本模拟攻击,并综合在不同算法、迭代次数、扰动量大小的攻击下模型效果的变化,给出模型安全评分及详细的测评报告(如下图)。目前已支持黑盒查询攻击方法与黑盒迁移攻击方法。防御解决方案则是为用户提供模型安全性升级服务,目前RealSafe平台支持五种去除对抗噪声的通用防御方法,可实现对输入数据的自动去噪处理,破坏攻击者恶意添加的对抗噪声。根据上述的模型安全评测结果,用户可自行选择合适的防御方案,一键提升模型安全性。另外防御效果上,根据实测来看,部分第三方的人脸比对API通过使用RealSafe平台的防御方案加固后,安全性可提高40%以上随着模型攻击手段在不断复杂扩张的情况下,RealSafe平台还持续提供广泛且深入的AI防御手段,帮助用户获得实时且自动化的漏洞检测和修复能力。准确度99.99%也难逃被“恶意干扰”,RealSafe高效应对算法威胁 考虑到公众对于对抗样本这一概念可能比较模糊,RealSafe平台特意选取了公众最为熟知的人脸比对场景(人脸比对被广泛用于金融远程开户、刷脸支付、酒店入住登记等场景的身份认证环节)提供在线体验。并且,为了深入研究“对抗样本”对人脸比对系统识别效果的影响,RealAI 团队基于此功能在国内外主流 AI 平台的演示服务中进行了测试。实测证明,“对抗样本”可以极大的干扰人脸比对系统的识别结果,而测试的这几家互联网公司平台开放的人脸比对API或SDK,几乎覆盖了目前市面上很多中小型企业在落地人脸识别应用时的选择,如果他们的人脸比对技术存在明显的安全漏洞,意味着更广泛的应用场景将存在安全隐患。因此,为了帮助更大范围内的企业高效应对算法威胁,RealSafe平台具备以下两大优势:·  组件化、零编码的在线测评:相较于ART、Foolbox等开源工具需要自行部署、编写代码,RealSafe平台采用组件化、零编码的功能设置,免去了重复造轮子的精力与时间消耗,用户只需提供相应的数据即可在线完成评估,学习成本低,无需拥有专业算法能力也可以上手操作。·可视化、可量化的评测结果:为了帮助用户提高对模型安全性的概念,RealSafe平台采用可量化的形式对安全评测结果进行展示,根据模型在对抗样本攻击下的表现进行评分,评分越高则模型安全性越高。此外,RealSafe平台提供安全性变化展示,经过防御处理后的安全评分变化以及模型效果变化一目了然。从数字世界到物理世界 RealAI落地更多安全周边产品随着机器学习模型不断的升级演化,“对抗样本”已经演变成一种新型攻击手段,并且逐渐从数字世界蔓延到物理世界:在路面上粘贴对抗样本贴纸模仿合并条带误导自动驾驶汽车拐进逆行车道、胸前张贴一张对抗样本贴纸在监控设备下实现隐身……因此,除了针对数字世界的算法模型推出安全评测平台,RealAI团队也联合清华大学AI研究院围绕多年来积累的领先世界的研究成果落地了一系列AI攻防安全产品,为更多场景保驾护航。比如通过佩戴带有对抗样本图案的“眼镜”,黑客可以轻易破解商用手机的面部解锁,通过在胸前张贴特制花纹实现在AI监控下的“隐身”,以及通过在车辆上涂装特殊花纹躲避AI对车辆的检测。发现类似新型漏洞的同时,RealAI也推出相应的防御技术,支持对主流AI算法中的安全漏洞进行检测,并提供AI安全防火墙对攻击AI模型的行为进行有效拦截。人工智能的大潮滚滚而来,随之而来的安全风险也将越来越多样化,尤其近年来因AI技术不成熟导致的侵害风险也频频发生,可以说,算法漏洞已逐渐成为继网络安全、数据安全后又一大安全难题。所幸的是,以RealAI为代表的这些顶尖AI团队早已开始了AI安全领域的征程,并开始以标准化的产品助力行业降低应对安全风险的门槛与成本。此次上线RealSafe人工智能安全平台是RealAI的一小步尝试,但对于整个行业而言,这将是人工智能产业迈向健康可控发展之路的一大步。
清华大学 2021-04-10
人工智能诊断腹膜转移
  肠癌合并同时性腹膜转移(PC)的发病率约为5-10%,复发时合并腹膜转移发病率为25-44%。“腹膜转移如果能够早期诊断,可以增加彻底减瘤手术的机会,未来能够明显延长肠癌患者的生存期。”王辉教授说。2018年团队和深圳腾讯AI lab建立了合作关系,研发一个基于卷积神经网络(CNN)的ResNet3D系统。经查,这是世界上第一个诊断肠癌腹膜转移的AI平台,能够自动识别原发肿瘤特征,同时提取肿瘤临近腹膜的影像学特征,构建基于人工智能的SVM分类器。训练组一共纳入了19814张CT图像,验证组包括了7837张CT图像。    研究发现,ResNet3D的AI系统仅需花费34秒就自动识别并诊断了所有验证图像。“ResNet3D+SVM分类器”的肠癌腹膜转移诊断的准确性高达94%,AUC为0.922,敏感性和特异性均高达94%,明显优于常规增强CT的诊断能力。
中山大学 2021-04-13
人工智能教学实验平台
面向人工智能专业方向理论和实验的云教学平台,融合了Jupyter Notebook实验平台和教学资源中心两大模块。提供开箱即用人工智能编码实验环境,使教学过程高效、便捷。
新大陆教育 2022-06-23
人工智能机器人
人工智能机器人实训平台采用先进的实感技术,搭载高精度激光雷达、高清摄像头和红外传感器,可以实现人脸扫描,微秒识别;环境认知,物体识别;动作捕捉,即时反馈;手势认知,人性互动等功能,同时可完成自主建图,自主导航避障、自主充电等续航问题。拥有25套基础表情动作和486类情感语言表达,能实现语音、动作、手势、表情、触控、感应等多模态交互,以及多语种和国内多方言互动。通过对人工智能机器人进行仿生模块化的拆解装配,可以实现声控识别、自然语言理解、人脸识别、情绪识别等多模块人工智能技术实训,培养智能机器人开发及应用能力。
苏州需要智能技术有限公司 2021-12-08
人工智能实验室
优化人工智能学科布局,加快人工智能领域一级学科建设。 密切关注人工智能领域前沿技术,将技术及资源引入到人才培养。 部署完整的人工智能实验环境、实验资源、课程体系和教学全流程平台。 搭建完整的专业框架,全面支撑高校人工智能方向的教学与科研。 培养具备深度学习算法设计开发的人工智能应用型人才。
青软创新科技集团股份有限公司 2022-07-06
人工智能专业培养方案
本在线专业培养项目,旨在坚持立德树人的基础上,培养在“人工智能+X”方向上掌握坚实的基础理论与系统的专门知识,具有从事科学研究、独立担负专门技术工作能力和掌握产业应用基本技能的专门人才。 课程体系设置上体现“融”与“新”,突出“人工智能+X”的学科融合,力争将科研成果、产业应用现状及时转化为教学内容。课程设置强调人工智能专业知识与各行业领域的交叉与融合,注重知识累积的循序渐进,既强调基础理论课程的系统性,又突出学科最新交叉应用成果和发展动向,课程力求内容新颖,能够激发广大青年学习者进一步学习的兴趣。
高等教育出版社有限公司 2021-02-09
学习科学与人工智能赋能职业教育学术活动
第62届中国高等教育博览会——学习科学与人工智能赋能职业教育学术活动
中国高等教育博览会 2024-11-04
人工智能药物筛选、药物设计
技术分析(创新性、先进性、独占性) 本项目已经具备具有200个CPU集群辅助计算,目前已建立了国际上领先的万个化学药物的化合物库和六万多种中药单体化合物库、利用国际一流的计算机辅助设计软件(Schrodinger, Discovery Studio, MOE等)进行大规模化合物数据库的虚拟筛选,并根据REOS预测、ADME/T性质的理论预测,结构聚类等,剔除成药性差的化合物。 目前已经针对多个靶点和药物做了国际创新性研究工作,相关成果在药学领域相关SCI期刊上共发表论文17篇,平均影响因子>4.5,他引460余次。
苏州大学 2021-05-11
人工智能与机器视觉定位
一、项目简介 由于众多工业企业存在工作环境噪音大、粉尘多、劳动强度大等问题,均不同程度面临着招工难的问题,生产规模很难扩大。同时,由于长时间重复机械工作,容易出现漏检和误检,整体工作效率不高。对于已上线成套设备的企业,其集成度仍较低,自动化程度及性能都亟待提高,很难满足市场的迫切需求。因此,机器换人可有效解决上述问题,而机器视觉是模拟人工操作的关键,综合利用视觉检测、模式识别、优化调度和综合信息管理等技术和方法提高生产自动化水平极为重要。 二、前期研究基础 项目组已与惠州高视科技有限公司签署合作协议“机器视觉定位平台开发与技术服务,2018.3-2019.3,50万元”,并联合厦门大学自动化系与高视科技有限公司建立“视觉定位联合实验室”,与厦门市自动化学会签署合作协议,联合建立“人工智能-机器视觉联合实验室”。研究了视觉对位平台如何实现两个目标物之间的精确对准。视觉系统需要对两个目标物分别进行拍摄,选择Mark点或者目标物的边或角的特征信息。利用视觉对位技术,实现两个目标物物理坐标之间的在X、Y轴和角度坐标的偏差,通过驱动相关运动平台,引导平台运动到贴合位置,实现视觉引导精确对位。 三、应用技术成果 开发了鞋模喷胶系统,采用传送带传送鞋模,利用工业相机采集图像,经图像处理算法检测鞋模边缘,再将处理过的边缘坐标数据传送给控制器,控制器控制喷胶器对鞋模进行喷胶。 开发了自动贴盖机系统,基于传送带传送产品,利用工业相机采集传送带上的产品图像,再通过图像处理算法定位到模板图像在采集图像中的准确位置,从而通过坐标转换将图像中的坐标转换到世界坐标,然后将数据通过串口通信传送给控制系统,控制系统会控制机械手在定位到的位置坐标贴上产品标签或者封盖。 四、合作企业 惠州高视科技有限公司是一家专业从事机器视觉应用领域设备、计算机图像处理系统解决方案研发的高科技现代化企业。公司的机器视觉产品广泛应用于液晶、电子、新能源、金属加工等行业公司秉承以人为本、合作共赢的管理理念,以技术开发为中心,以客户需求为导向,致力于成为在机器视觉检测、测量、图像识别领域杰出的系统解决方案及设备供应商。拥有11项软件著作权和5项实用新型专利。
厦门大学 2021-04-11
首页 上一页 1 2 3 4 5 6
  • ...
  • 321 322 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1