高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
在拓扑材料ZrTe5中观察到的spin zero现象
通过研究三维狄拉克半金属材料ZrTe5中量子振荡随磁场倾角的演化,发现在特定角度电阻的量子振荡会突然消失,并伴随出现振荡相位的反转。分析表明这是所谓的spin zero现象,这也是第一次在拓扑材料中观察到该现象。更重要的是,这一现象带来的振荡相位反转,表明广泛使用的确定贝里相的实验方法,在某些条件下会得出错误结论。 拓扑材料在强磁场下由于轨道作用和自旋塞曼劈裂,可能演化出不同的拓扑态,从而为研究这些态之间的转化,即拓扑相变,提供了理想的平台。Spin zero现象是由于朗道能级发生塞曼劈裂,两套劈裂的朗道能级的量子振荡相互叠加干涉引起的,因此可以提取出自旋相关的信息。ZrTe5中spin zero现象的出现,暗示当磁场沿a轴或c轴附近时,ZrTe5的狄拉克能带磁场作用下变成线节点拓扑半金属,而非外尔半金属。所以,spin zero的出现,也可以用于帮助判定拓扑态的类别。图表1:ZrTe5中量子振荡的振幅和相位随磁场角度的变化。
北京大学 2021-04-11
利用自学习系统实现逼近理论极限的光学手性材料设计
随着纳米光子学的发展,具有超颖性质的人工微结构吸引了众多研究。针对日益增长的研究和设计需求,北京大学物理学院方哲宇及其研究团队实现了一种自洽的框架——BoNet,其结合了贝叶斯优化(Bayesian optimization)和卷积神经网络(convolutional neural network),实现了纳米结构对于超强光学手性的自学习。基于此框架,他们将纳米结构设计表示为图形,并输入卷积神经网络进行电场分布和反射光谱的学习,此过程不需要将纳米结构参数化为向量,因此最大化的保留了其几何信息和边界条件。同时,利用贝叶斯优化以实现对纳米结构远场光学手性的优化,并运用其采样样本反复训练神经网络实现自学习。利用BoNet,他们针对远场反射光谱的圆二色性进行优化并逼近了其理论极限(CD = 1),同时利用神经网络匹配预测的近场电场分布,对获得的强光学手性进行分析解释。 此框架能够被直接推广用于其他光学性质的自学习优化,例如实现反常透射,偏振态调制和相位调制。更进一步的,此方法论能够帮助设计更多的,具有良好光学性质和运用价值的纳米光子学器件,比如消色差超透镜,超灵敏的微传感器以及智能超表面等。此研究同时能够启发更多数据驱动的研究,通过利用人工神经网络和其他机器学习的方法,实现对传统科学研究的新探索,在制药,引物设计,固体结构分析上启发新突破。 该工作于2019年11月19日在线发表于学术期刊《PHYSICAL REVIEW LETTERS》上,题为“Self-Learning Perfect Optical Chirality via a Deep Neural Network”(DOI: 10.1103/PhysRevLett.123.213902)。北京大学物理学院方哲宇研究员是本文的通讯作者,李瑜,徐优俊,姜美玲为该文的共同第一作者,北京大学定量生物学中心来鲁华教授为合作者,北京大学为唯一通讯作者单位。该工作得到得到了科技部、教育部、国家自然科学基金委、北京大学人工微结构和介观物理国家重点实验室、北京大学纳光电子前沿科学中心、量子物质科学协同创新中心、北京大学高性能校级计算平台、北京大学生命科学中心高性能计算平台等单位的支持。用于近远场计算的神经网络结构表征实现了逼近理论极限的高手性,并利用神经网络对近场分布进行分析
北京大学 2021-04-11
在拓扑外尔半金属晶体中观测到非平庸的超导特性
通过电输运、扫描隧道谱、比热、抗磁性等系统的实验研究并结合第一性原理计算,在掺硫的第二类拓扑外尔半金属二碲化钼单晶中发现了非平庸超导态的特征。实验中所使用的硫掺杂的高质量二碲化钼晶体是通过化学气相输运的方法合成的,掺杂比例约为0.2。 首先通过准粒子干涉实验与第一性原理计算相结合,在样品表面探测到了费米弧拓扑表面态的存在。最后通过扫描隧道谱学和比热的测量对比,发现样品表面态的超导能隙远大于体态的超导能隙,而且该样品表面态的能隙与临界温度的比值(Δ/kBTc)约为8.6,远大于常规超导材料的能隙与临界温度的比值(约为1.76),表明了表面态具有非常规超导库珀对配对机制,极可能是拓扑超导的普适特征。然后通过电输运测量和比热测量,发现这种材料为s波超导体,且它的超导能隙的带间耦合很强,超导对称性应为s+- 对称性。这可能是继铁基高温超导之后,又一种新的s+-超导体。而且根据理论预言,拓扑外尔半金属中s+-对称性的超导态会形成拓扑超导态。掺硫的第二类拓扑外尔半金属二碲化钼单晶中拓扑超导特征的发现,证实了外尔半金属中实现拓扑超导的可行性,推动了拓扑超导相关领域的进一步发展,也为拓扑量子计算机的最终实现奠定了前期的科研基础。图一. 电磁输运实验观测到的s+- 超导的证据,揭示拓扑超导的可能性。 (A) 电磁输运实验的测量示意图。 (B) 超导转变温度附近的电阻率-温度关系。(C) 各个温度和磁场下的电阻率。(D) 超导上临界磁场和温度的关系。红色的线是两带超导模型的拟合曲线,拟合结果发现带间耦合比较大,表明该超导行为是s+- 超导。图二. 扫描隧道显微镜观发现表面态的超导能隙远超过体态的超导能隙,揭示出拓扑超导的可能性。(A) 4 K和0.4 K下样品表面的微分电导dI/dV谱。在0.4 K下,超导能隙是1.7 meV,远大于体态的超导能隙,且能隙与临界温度的比值约为约为8.6,远大于常规超导材料的能隙与临界温度的比值(1.76)。4 K时样品处于非超导态。(B) 0.4 K超导dI/dV谱和各向同性BCS超导谱的对比。(C) 0.4 K时,不同磁场下的超导dI/dV谱,超导能隙被外加磁场所抑制。
北京大学 2021-04-11
关于原位电子显微学法研究锂电池离子迁移的方法
包括Li离子在SnS2中的迁移(Nano Lett 16, 5582,2016),Na离子在SnS2中的迁移(Nano Energy 32, 302,2017),Na离子在MoS2中的迁移(ACS Nano 9, 11296,2015)。这些具有van der Waals相互作用的二维材料,不仅仅展现出了优异电学、力学、光学性能,也是重要的能源存储材料。作为电池电极材料,van der Waals相互作用系统的最主要特征就是层间相互作用很弱,碱金属离子能够比较容易地在其中发生迁移。他们的研究发现,在二维材料中离子插入和拔出的反应路径是不对称的,这种不对称的反应路径对应着充放电过程中不对称电压平台。该研究揭示了这些层状锂电池电极材料中低能量效率的一个根源。
北京大学 2021-04-11
关于召开西部高等教育振兴与高校治理创新论坛的通知
为深入学习贯彻《关于新时代振兴中西部高等教育的意见》精神,激发西部高等教育内生动力和发展活力,推动西部高等教育高质量发展,经研究,中国高等教育学会决定举办西部高等教育振兴与高校治理创新论坛。该论坛是2022年8月4-6日在西安举办的第57届中国高等教育博览会的组成部分。
中国高等教育学会 2022-07-13
关于召开西部高等教育振兴与高校治理创新论坛的通知
为深入学习贯彻《关于新时代振兴中西部高等教育的意见》精神,激发西部高等教育内生动力和发展活力,推动西部高等教育高质量发展,经研究,中国高等教育学会决定举办西部高等教育振兴与高校治理创新论坛。该论坛是2022年8月4-6日在西安举办的第57届中国高等教育博览会的组成部分。
中国高等教育学会 2022-07-14
关于调整人类遗传资源管理工作相关事宜的公告
为贯彻落实《中华人民共和国生物安全法》《中华人民共和国人类遗传资源管理条例》,科技部研究制定了《人类遗传资源管理条例实施细则》,为确保各项规定落地落实,进一步提高我国人类遗传资源管理效能,现将有关工作安排公告如下。
科技部 2023-06-27
天津市关于征集海洋领域先进科学技术成果的通知
为贯彻落实党的二十大精神,聚焦海洋强国战略,深入落实创新驱动发展战略,推动涉海先进适用科技成果转化应用,科技支撑我市海洋经济高质量发展,市科技局计划组织召开“天津市海洋领域先进科学技术成果对接会”,现面向社会公开征集海洋领域先进科学技术成果,现将有关事项通知如下。
社会发展与农村科技处 2023-08-04
科技部关于公布首批创新型县(市)验收通过名单的通知
为贯彻落实国务院办公厅《关于县域创新驱动发展的若干意见》,根据《创新型县(市)建设工作指引》,科技部于2018年启动建设全国首批52个创新型县(市)。三年建设期满后,经组织专家评审、现场复核及综合评议,形成首批创新型县(市)验收通过名单。现将验收通过的首批创新型县(市)名单(附件1)予以公布。
科技部 2022-08-31
关于2022年国家社科基金年度项目和青年项目立项名单的公示
根据《国家社会科学基金管理办法》的有关规定,现将2022年国家社科基金年度项目和青年项目立项名单予以公示。公示时间为2022年9月13日至19日。公示期内,如有异议,请以书面方式向我办反映,并提供必要的证据材料,以便核实查证。
全国哲学社会科学工作办公室 2022-09-13
首页 上一页 1 2
  • ...
  • 995 996 997 998 999 1000 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1