高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种制备甲壳素脱乙酰酶的方法
研发阶段/n本发明涉及一种制备甲壳素脱乙酰酶的方法,该方法用短柄梨孢帚霉(Scopulariopsisbrevicaulis)作甲壳素脱乙酰酶产生菌,经活化后将其接入到含有发酵培养基的发酵容器中,使其在pH值为6.5-7.0之间,温度在27-29oC、转速200-240rpm的摇床上发酵90-100小时,发酵液经分离、盐析、纯化得甲壳素脱乙酰酶产品。利用本发明的方法制备的甲壳素脱乙酰酶每ml发酵液的活力单位最高可达36U。
湖北工业大学 2021-01-12
疏棉状嗜热丝孢菌脂肪酶(TLL)
可以量产/n针对当前工业发展对脂肪酶的大量需求与脂肪酶实际表达水平较低 的技术瓶颈,突破了脂肪酶超高效表达技术关键,建立了真菌脂肪酶高 效表达技术平台,构建的疏棉状嗜热丝孢菌脂肪酶(Thermomyces lanuginosus lipase,TLL)基因工程菌 10L 发酵,酶活力可达 64,000 U/ml 以上,达到世界报道的最高水平。产品可用于生物能源,制革,油脂水 解、转酯、酯化,再生纸脱墨等广泛用途。建设其发酵生产线预计需要 800-1000 万元,经济效益可观。针对当前工业发展对脂肪酶
华中科技大学 2021-01-12
一种使植鞣革柔软的酶处理方法
本发明提供的一种使植鞣革柔软的酶处理方法是在转鼓中,先将植鞣革浸泡于自身重量100~300%的酸溶液中,于30~60℃下转动酸化处理至少10min,并使体系的pH稳定在3~4.5内,然后在植鞣革的酸化液中以植鞣革重量计加入10~200u/g的酶制剂软化处理至少0.5h,并控制酶处理废液中羟脯氨酸含量不高于20mg/L,软化完毕进行水洗,水洗后按轻革加工的常规工艺进行后续处理。本发明由于在酶处理前对植鞣革进行了酸化处理,因而使后续加入的酶制剂的活力得以保持,使处理后的植鞣革的柔软性和粒面平细性得到明显提高,同时避免了过度处理而可能发生破坏植鞣革的现象,达到了将其用作鞋面革、服装革、沙发革等轻革材料的要求。该方法操作简便,易于推广。
四川大学 2016-10-12
植酸酶热稳定性研究及其高温剂型开发
技术原理 :颗粒高温植酸酶制剂是一种新型的饲料添加剂 ,具有催化植酸 及植酸盐水解成肌醇或磷酸盐,提高饲料中有机磷的利用率,减少环境的磷 污染和解除植酸的抗营养作用等功能,是一种高效环保型生物饲料添加剂。 技术原理主要通过强化酶和载体的多点结合, 使酶蛋白的构象更加稳定 .应用 天然的多羟基化合物颗粒化材料还原末端含有许多的游离羟基, 结合酶蛋白 分子侧链氨基酸残基中的自由氨基提高酶结构的刚性和热稳定性
南昌大学 2021-04-14
Happy-TL4M酶标板冷冻离心机
性能特点: 1、微机控制,触摸面板,LCD显示。 2、采用交流变频电机,全封闭风冷谷轮压缩机组,无氟制冷剂。 3、可直接设定转速,自动计算RCF值。可直接设定RCF值,自动转换成转速。 4、具有10档升降速。 5、运行中可修改参数,运行参数自动记忆。 6、具有10种自定义程序存储功能。 7、具有软刹车功能。 8、具有转子号识别功能。 9、具有超温、超速、不平衡和门盖安全保护功能,并在显示窗口显示故障信息和声音报警。
济南福的机械有限公司 2022-04-27
家具用人工林木材功能性改良新技术
本项目针对人工速生林木材密度小、强度低的特点,研究开发出木材化学改性与干燥一体化工艺技术及装备。本技术能够大幅度提高速生材性能,同时解决了常规木材改性技术中改性剂浸透困难、环保性差,改性材功能单一、尺寸小,无法满足工业生产要求等问题;解决了传统木材改性技术工艺“先干燥-再浸渍处理-再二次干燥”的能耗高的问题。本项目技术获国家发明专利授权2项,已在多家企业应用。
北京林业大学 2021-02-01
人工智能技术赋能5G超声设备
新冠肺炎常规通过病史、CT等进行病情评估,但重症病房应用超声不便,还需要评估重症患者的心脏等多器官,然而操作者绝大多数不是专业超声医生,这为如何在治疗重症患者的过程中更好地发挥超声的作用提出了难题。深圳国际研究生院袁克虹团队与深圳华声医疗技术股份有限公司合作,用人工智能技术赋能5G超声设备,增添采集心肺关键标准切面的导航以及关键参数的自动测量等功能,辅助医生对重症病人进行动态评估和治疗。 袁克虹团队与深圳华声医疗技术股份有限公司1月中旬组成研发团队,在已有合作工作的基础上,针对新冠肺炎重症患者临床超声的迫切需求开展联合攻关,半个月就获得了较好的成果。该技术从2月初开始在武汉协和西院等多家医院使用,在一定程度上辅助了医生对重症患者进行疾病的动态评估和治疗指导。 目前该技术正由国家感染性疾病临床研究中心(深圳市第三人民医院)牵头开展进一步研究,将完善和改进现有功能,优化远程诊断流程,实现超声为医生治疗重症患者提供更智能、更可靠、更专业的帮助。
清华大学 2021-04-10
用于种子捕食追踪的人工种子系统建立
动物捕食植物种子(下称种子捕食)是动植物协同进化的重要方面。动物捕食植物种子可影响植物种群更新和繁衍;植物通过调节各种性状,如种子大小、蛋白质含量,调节动物捕食行为。植物性状对种子捕食调节能力的评估对理解动植物协同进化具有重要意义。 因此,建立一种用于种子捕食追踪的人工种子系统,对于种子捕食追踪及相关研究,理解动植物协同进化,促进野生植物尤其是珍稀濒危植物保护具有重要的作用。
辽宁大学 2021-04-11
人工智能药物筛选、药物设计及毒性预测算法
本成果采用最新的深度学习和分子模拟算法,结合新一代分子特征化方法,开发了多种计算机模型,可用于药物开发中的多个阶段,为药物的快速设计开发提供一个完整的基于人工智能的解决方案。成果:1.药物毒性预测方法:传统的化合物毒性检测技术一般需要使用生化试验、细胞实验、甚至动物模型,这些方法不仅耗费大量时间,而且成本很高。使用计算模型进行有机化合物的毒性预测,所需投入较少,但产出巨大。特别是基于化合物的物理化学和结构特性的计算模型,甚至能够在化合物合成之前就对其进行预测,大大提高了效率,使其越来越受到欢迎。在进行体外和体内试验之前先使用计算机模型对化合物进行大规模的毒性筛选,能够更好地解决候选药物具有毒性的问题。我们建立了一套新的基于多种分子指纹和机器学习算法的化合物毒性预测集成学习算法,运用此集成学习算法建立了新的有机化合物致癌性、致突变性和肝毒性预测模型。我们分别建立了名为CarcinoPred-EL (http://112.126.70.33/toxicity/CarcinoPred-EL/, 致癌性预测)、MutagenPred-EL (http://112.126.70.33/toxicity/MutagenPred-EL/, 致突变性预测)、LiverToxPred-EL (http://112.126.70.33/toxicity/LiverToxPred-EL/, 肝毒性预测)的预测服务器,这些服务器能够为使用者提供更高效更便捷的预测技术服务。自2017年服务器发表起,我们已为国内外药物分子设计研究者提供了5000多次共计超过20多万个化合物的毒性预测服务。在有机化合物毒性预测研究方向,我们主要完成了化合物的细胞毒性、心脏毒性、生殖毒性、血脑屏障透过性、水生生物毒性预测模型,以及糖尿病早期筛查模型的开发,正在进行P450酶阻滞剂性预测模型、基于图神经网络的毒性预测算法研究、基于分子对接的化合物毒性预测研究等。相关研究成果已发表多篇学术论文(Zhang L., et al. Scientific Reports, 2017, 7: 2118. WOS被引次数80,ESI 1%高被引论文;Ai H., et al. Toxicological Sciences, 2018, 165: 100-107;Yin Z., et al. Journal of Applied Toxicology. 2019, 39(10): 1366-1377;Ai H., et al. Ecotoxicology and Environmental Safety. 2019, 179: 71-78;Liu M., et al. Toxicology Letters. 2020, 332: 88-96;Feng H., et al. Toxicology Letters. 2021, 340: 4-14;Li S. et al. Interdisciplinary Sciences: Computational Life Sciences. 2021, 13: 25-33.)致癌性预测服务器首页致癌性预测结果页相关综述对本服务器的介绍RF-hERG-Score预测药物引起的hERG相关心脏毒性2.药物设计方法:在计算机上对药物靶点和药物分子的结构和活性建模,计算药物与靶点之间的相互作用关系,从而设计出具有治疗作用的药物。计算机辅助药物设计可以为药物设计各阶段的实验方案提供有意义的指导,减少需要通过实验评估的候选药物的数量,从而加快新药研发速度。我们应用分子对接、分子动力学模拟、自由能计算、机器学习等方法研究流感病毒等重要疾病的计算机辅助药物设计、并开发更有效的计算机辅助药物设计方法。在计算机辅助药物设计研究我们主要完成了流感病毒M2质子通道蛋白抑制剂虚拟筛选方法研究,正在进行先导化合物生成模型研究、基于机器学习的虚拟筛选打分函数算法开发、SARS-CoV-2病毒S蛋白与受体相互作用及药物设计研究。特异性重打分函数显著虚拟筛选性能显著较高筛选出两个候选抑制剂3.药物靶点识别方法:长非编码RNA(lncRNA)是一种长度在200nt至100,000nt之间的非编码RNA,是转录物的主要成分。研究表明lncRNA在许多生物学和病理学过程中起着重要作用。lncRNA起作用的重要途径是与其靶蛋白结合。lncRNA-蛋白质相互作用的实验研究需要大量资源。累积的实验数据使得通过计算方法预测lncRNA-蛋白质相互作用成为可能。我们使用各种数学建模和机器学习方法开发了几种用于预测lncRNA-蛋白质相互作用的新模型。这些模型命名为:RWLPAP(随机游走),LPI-NRLMF(邻域正则化逻辑矩阵分解),IRWNRLPI(集成随机游走和邻域规则化Logistic矩阵分解),LPI-BNPRA(双向网络投影推荐算法),LPI-ETSLP(基于特征值变换的半监督链路预测),HLPI-Ensemble(集成学习)。在交叉验证中,我们的模型获得了较好的预测性能。lncRNA-蛋白质相互作用预测模型的性能比较lncRNA-蛋白质相互作用预测服务器相关软件著作权:
辽宁大学 2021-04-10
人工智能药物筛选、药物设计及毒性预测算法
本成果采用最新的深度学习和分子模拟算法,结合新一代分子特征化方法,开发了多种计算机模型,可用于药物开发中的多个阶段,为药物的快速设计开发提供一个完整的基于人工智能的解决方案。 成果:1.药物毒性预测方法:传统的化合物毒性检测技术一般需要使用生化试验、细胞实验、甚至动物模型,这些方法不仅耗费大量时间,而且成本很高。使用计算模型进行有机化合物的毒性预测,所需投入较少,但产出巨大。特别是基于化合物的物理化学和结构特性的计算模型,甚至能够在化合物合成之前就对其进行预测,大大提高了效率,使其越来越受到欢迎。在进行体外和体内试验之前先使用计算机模型对化合物进行大规模的毒性筛选,能够更好地解决候选药物具有毒性的问题。我们建立了一套新的基于多种分子指纹和机器学习算法的化合物毒性预测集成学习算法,运用此集成学习算法建立了新的有机化合物致癌性、致突变性和肝毒性预测模型。我们分别建立了名为CarcinoPred-EL (http://112.126.70.33/toxicity/CarcinoPred-EL/, 致癌性预测)、MutagenPred-EL (http://112.126.70.33/toxicity/MutagenPred-EL/, 致突变性预测)、LiverToxPred-EL (http://112.126.70.33/toxicity/LiverToxPred-EL/, 肝毒性预测)的预测服务器,这些服务器能够为使用者提供更高效更便捷的预测技术服务。自2017年服务器发表起,我们已为国内外药物分子设计研究者提供了5000多次共计超过20多万个化合物的毒性预测服务。在有机化合物毒性预测研究方向,我们主要完成了化合物的细胞毒性、心脏毒性、生殖毒性、血脑屏障透过性、水生生物毒性预测模型,以及糖尿病早期筛查模型的开发,正在进行P450酶阻滞剂性预测模型、基于图神经网络的毒性预测算法研究、基于分子对接的化合物毒性预测研究等。相关研究成果已发表多篇学术论文(Zhang L., et al. Scientific Reports, 2017, 7: 2118. WOS被引次数80,ESI 1%高被引论文;Ai H., et al. Toxicological Sciences, 2018, 165: 100-107;Yin Z., et al. Journal of Applied Toxicology. 2019, 39(10): 1366-1377;Ai H., et al. Ecotoxicology and Environmental Safety. 2019, 179: 71-78;Liu M., et al. Toxicology Letters. 2020, 332: 88-96;Feng H., et al. Toxicology Letters. 2021, 340: 4-14;Li S. et al. Interdisciplinary Sciences: Computational Life Sciences. 2021, 13: 25-33.) 致癌性预测服务器首页 致癌性预测结果页 相关综述对本服务器的介绍 RF-hERG-Score预测药物引起的hERG相关心脏毒性 2.药物设计方法:在计算机上对药物靶点和药物分子的结构和活性建模,计算药物与靶点之间的相互作用关系,从而设计出具有治疗作用的药物。计算机辅助药物设计可以为药物设计各阶段的实验方案提供有意义的指导,减少需要通过实验评估的候选药物的数量,从而加快新药研发速度。我们应用分子对接、分子动力学模拟、自由能计算、机器学习等方法研究流感病毒等重要疾病的计算机辅助药物设计、并开发更有效的计算机辅助药物设计方法。在计算机辅助药物设计研究我们主要完成了流感病毒M2质子通道蛋白抑制剂虚拟筛选方法研究,正在进行先导化合物生成模型研究、基于机器学习的虚拟筛选打分函数算法开发、SARS-CoV-2病毒S蛋白与受体相互作用及药物设计研究。 特异性重打分函数显著虚拟筛选性能显著较高 筛选出两个候选抑制剂 3.药物靶点识别方法:长非编码RNA(lncRNA)是一种长度在200nt至100,000nt之间的非编码RNA,是转录物的主要成分。研究表明lncRNA在许多生物学和病理学过程中起着重要作用。lncRNA起作用的重要途径是与其靶蛋白结合。lncRNA-蛋白质相互作用的实验研究需要大量资源。累积的实验数据使得通过计算方法预测lncRNA-蛋白质相互作用成为可能。我们使用各种数学建模和机器学习方法开发了几种用于预测lncRNA-蛋白质相互作用的新模型。这些模型命名为:RWLPAP(随机游走),LPI-NRLMF(邻域正则化逻辑矩阵分解),IRWNRLPI(集成随机游走和邻域规则化Logistic矩阵分解),LPI-BNPRA(双向网络投影推荐算法),LPI-ETSLP(基于特征值变换的半监督链路预测),HLPI-Ensemble(集成学习)。在交叉验证中,我们的模型获得了较好的预测性能。 lncRNA-蛋白质相互作用预测模型的性能比较 lncRNA-蛋白质相互作用预测服务器相关软件著作权:
辽宁大学 2021-05-10
首页 上一页 1 2
  • ...
  • 29 30 31
  • ...
  • 110 111 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1