高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
专家报告荟萃㉜ | 全国新文科教育研究中心办公室主任、山东大学本科生院副院长申树欣:新文科建设的宏观态势与重点任务
高校围绕新文科建设的一些重点难点问题提出的重点方向,也是下一步推进新文科重要的方向,也给各位老师做一个简要的分享。
中国高等教育博览会 2025-02-19
关于举办建设教育强国·高等教育改革发展论坛之平行论坛“落实立德树人根本任务 推进大中小学思政教育一体化论坛”的通知
经教育部批准,中国高等教育学会决定在吉林省长春市举办“建设教育强国·高等教育改革发展论坛”(以下简称“论坛”)。论坛由1个主论坛和14个平行论坛组成,“落实立德树人根本任务 推进大中小学思政教育一体化论坛”是平行论坛之一。
中国高等教育学会 2025-04-29
运动系统模型
1、参照典型人体标本及国内外经典权威教材及图谱制作,如人卫出版社丁文龙主编的《系统解剖学》、人卫出版社南京医学院主编的《人体解剖学图谱》、江苏科学技术出版社姜同喻编著的《连续层次解剖图谱》、山东科学技术出版社丁自海主译《格式解剖学》、广东科技出版社胡耀民主编的《人体解剖学标本彩色图谱》等,造型自然准确、颜色自然,满足教学需要;
张家港市华亿科教设备有限公司 2024-12-23
循环系统模型
1、参照典型人体标本及国内外经典权威教材及图谱制作,如人卫出版社丁文龙主编的《系统解剖学》、人卫出版社南京医学院主编的《人体解剖学图谱》、江苏科学技术出版社姜同喻编著的《连续层次解剖图谱》、山东科学技术出版社丁自海主译《格式解剖学》、广东科技出版社胡耀民主编的《人体解剖学标本彩色图谱》等,造型自然准确、颜色自然,满足教学需要;
张家港市华亿科教设备有限公司 2024-12-23
呼吸系统模型
1、参照人体解剖标本及国内外经典权威教材及图谱制作,如人卫出版社丁文龙主编的《系统解剖学》、人卫出版社南京医学院主编的《人体解剖学图谱》、江苏科学技术出版社姜同喻编著的《连续层次解剖图谱》、山东科学技术出版社丁自海主译《格式解剖学》、广东科技出版社胡耀民主编的《人体解剖学标本彩色图谱》等,造型自然准确、颜色自然,满足教学需要;
张家港市华亿科教设备有限公司 2024-12-23
消化系统模型
1、参照人体解剖标本及国内外经典权威教材及图谱制作,如人卫出版社丁文龙主编的《系统解剖学》、人卫出版社南京医学院主编的《人体解剖学图谱》、江苏科学技术出版社姜同喻编著的《连续层次解剖图谱》、山东科学技术出版社丁自海主译《格式解剖学》、广东科技出版社胡耀民主编的《人体解剖学标本彩色图谱》等,造型自然准确、颜色自然,满足教学需要;
张家港市华亿科教设备有限公司 2024-12-23
高校智慧资助系统
建设智教智慧资助系统,通过其高效协同的后台分类处置能力,把高校学工资助事项进行整合和业务流程的约简化处理,运用大数据打通“最后一公里”,将线下的业务操作剥离开实体大厅转化为线上业务,实现高校学生资助工作的无纸化办公,让学生真正实现“最多跑一次”。 管理员可以灵活设定经困生等级(比如一般困难、困难、特别困难等)。 管理教师可以根据学校的经困生管理办法灵活设定经困生认定条件,在对应的条件下可以设置多条困难条件类型及对应的权重值、限制条件。 管理员可以灵活设定经困生申请计划,包括起止时间、对应认定条件、申报条件参数设置、申报对象。 学生通过移动端进行在线填写经困生申请材料,提交后系统可根据管理员设定的经困生等级条件自动给审核人员推荐申请经困生等级并可以手动调整,学生提交后可以实时查看审核进度。 班主任可以根据系统推荐的经困生等级自行根据实际条件进行手动确认等级,并保留推荐等级和班主任确认等级查询痕迹。 经困生认定条件需具备权重分配方案和认定版本的统一联动管理。 二级学院可以根据权限设置批量打包下载学生上传的经困生证明文件,并以学号+姓名方式保存。
吉林省智教软件有限责任公司 2025-05-16
高校报修管理系统
智教高校报修管理系统优化校园设施维修流程,提升服务效率与质量,满足学校师生及后勤管理部门的需求,维修完成后,能对维修服务质量(如维修效果、维修人员态度)进行打分评价,并可填写反馈意见,以便学校改进服务。 教师、学生可以通过手机端,点击报修服务、我要报修后,可以根据实际报修情况进行问题描述、上传图片等。学生可以实时跟踪维修进度,并对维修结果进行线上打分、评价。
吉林省智教软件有限责任公司 2025-05-16
VR心理放松系统
VR心理放松系统 功能介绍:1、 用户系统:独立的来访者管理体系,详细的个人档案记录,辅助量表评测体系,生物反馈数据、实时语音记录、单次诊疗记录、单次自评量表等多项数据的传输与记录;单次训练记录带有时间信息独立保存,可实现同一训练不同时段的跨越对比。2、 模块系统:多种功能的训练模块可供选择——肌肉渐进式放松训练:提供多种身临其境的立体放松场景和自主选择的视角模式,提供详细的练习指导语及放松音乐,使来访者以循序渐进的方式完成放松练习,消除身体和心理的紧张和焦虑情绪。深呼吸放松训练:提供多种身临其境的立体放松场景和自主选择的视角模式,提供详细的练习指导语及放松音乐,并提供可视化的呼吸信号配合来访者的练习,使来访者更轻松和舒适的完成放松练习,消除身体和心理的紧张和焦虑情绪。快速放松训练:提供多种身临其境的立体放松场景和自主选择的视角模式,提供特定的快速放松指导语,帮助来访者通过反复的练习可以实现快速放松,可以更有效的缓解各种生活中的压力和紧张情绪。
北京京师慧智科技有限公司 2025-05-22
一种通过scout ESI和CNN解码EEG运动想象四分类任务的新方法
导读东北电力大学和长春理工大学研究团队开发并实现一种结合脑电图源成像(ESI)技术和卷积神经网络(CNN)的新方法,以对运动想象(MI)任务进行分类。ESI技术采用边界元法(BEM)和加权最小范数估计(WMNE)分别解决EEG的正向和逆向问题。然后在运动皮层中创建十个scout来选择感兴趣的区域(ROI)。研究者使用Morlet小波方法从scout的时间序列中提取特征。最后,使用CNN对MI任务进行分类。实验结果:在Physionet数据库上的整体平均准确率达到94.5%,分别对左拳头、右拳头、双拳和双脚的单个准确率达到95.3%、93.3%、93.6%、96%,采用十倍交叉验证进行验证。研究人员表示,他们的研究成果与最先进的MI分类方法的结果相比,总体分类增加了14.4%。研究者为验证方法的有效性,加入了4个新的受试者进行验证,发现总体平均准确率为92.5%。此外,全局分类器适应单一对象,整体平均准确率提高到94.54%。研究者表示,他们提出的结合scout ESI和CNN的方法,提高了脑电解码四类MI任务的BCI性能。系统框架图1 系统框架图系统框架如图1所示。原始数据来自国际10-10系统的64个电极(不包括Nz、F9、F10、FT9、FT10、A1、A2、TP9、TP10、P9和P10电极),并以每秒160个样本的速度采集。根据国际10-10系统从64个通道采集原始脑电图,并使用BCI2000系统进行记录。记录的数据被分为四个独立MI任务包括左拳MI,右拳MI,双拳MI和双脚MI。首先,由于ERD在执行运动想象时在alpha和beta中不同,因此使用FIR滤波器对EEG进行了8 Hz至30 Hz的带通滤波。然后,通过计算包含正问题和逆问题的源,将传感器空间的活动转化为源空间的活动。接下来,创建scout并提取特征。研究者在运动皮层中创建了10个scout,因为我们只关心与运动相关的活动。十个scout中的每一个都代表了可用源空间中的一个感兴趣的区域(ROI),并且是定义在皮层表面或头部体积上的偶极子的子集。左脑的scout称为L1、L2、L3、L4、L5,右脑的scout称为R1、R2、R3、R4、R5。利用JTFA从10个scout的源时间序列中提取特征。最后,利用CNN对时频图进行分离并进行分类。实验在实验中,研究人员仅使用了随机选择的十个受试者的MI trail (S5,S6,S7,S8,S9,S10,S11,S12,S13,S14)。这里用于分析的数据集包含每个受试者84次试验,每一类包含21次试验。在记录64通道脑电图时,受试者执行了不同的运动想象任务。每个受试者针对以下四个任务中的每一个执行了3轮21试验:当目标出现在屏幕左侧时,受试者想象打开和合上相应的拳头,直到目标消失。然后受试者放松。当目标出现在屏幕的右侧时,受试者想象打开和合上相应的拳头,直到目标消失。然后受试者放松。当目标出现在屏幕顶部时,受试者想象打开和合上双手的拳头,直到目标消失。然后受试者放松。当目标出现在屏幕底部时,目标会想象双脚张开和合拢,直到目标消失。然后受试者放松。为了统一数据维数,研究者选择了4s的数据,因为每次想象任务的执行时间都在4s左右。此外,脑电图任务是分开的,研究人员在实验中将左拳,右拳,双拳和双脚MI任务分别称为T1,T2,T3和T4。图2 scout命名左右运动想象的scout分别命名为L1、L2、L3、L4、L5、R1、R2、R3、R4、R5,如图2所示。10个scout每一个都被扩展到40个顶点,每个顶点只有一个源。L1区域对应40个信号,其他scout也一样。在计算了来源后,研究者在运动皮层中创建了十个scout,如图3所示。图3 创建10个scout使用ESI计算十个受试者(S5、S6、S7、S8、S9、S10、S11、S12、S13、S14)每次试验的四个任务(T1、T2、T3、T4)的源。对于这四项任务中的每一项,每个受试者每次都要进行7次测试(#1,#2,#3,#4,#5,#6,#7)。展示了第一个步的10个被试的10个scout的4项任务的来源。然后提取10个scout的时间序列进行进一步分析。特征提取在计算源之后,研究人员在运动皮层中创建了包含40个源的10个scout,并提取了scout的时间序列。如图4所示为提取R5 scout时间序列作为示例。图的右边显示了R5 scout的时间序列。本文利用小波变换从scout时间序列中提取特征。图4 提取R5 scout时间序列作为示例在这项研究中,研究者提出利用CNN来解决运动想象任务分类的问题。该模型基于Schirrmeister等提出的Deep ConvNet架构,该网络模型由一个六层卷积网络组成,其中两个最大池层和三个全连接层,如图5所示。图5对于Physionet数据库,研究者首先采用Deep ConvNet架构,包括四个卷积层、四个最大池层和一个全连接层。在实验中,研究者依据经验使用两个最大池化层。并尝试了不同数量的卷积层和完全连接层。时频图利用Morlet小波方法得到了scout的特征。对于每个任务,R5 scout的时频图如图6所示。包含时间和频率互补的时频分析方法提供了时域和频域的联合分布信息,清晰地描述了信号频率与时间的关系。图6 R5 scout的时频图显然,只有部分时频映射是红色的,表明每个任务只对特定的频率和时间敏感。由于图的数量比较大,研究者使用CNN来选择和学习这些图中最基本的特征。研究人员随机选择了几个样本,并将一些特征图可视化,作为MI任务的学习表示,如图7所示。图7为了获得有效的结果,将数据集分为90%作为训练集,其余10%作为测试集。首先,将十个受试者的数据集(总共19320个样本)分为17388个样本以训练所提出的CNN模型,以及1932个样本以验证模型的有效性。在实验中,研究者还选择了另外四个受试者的数据集以增加数据集的规模(27048个样本),其中24343个样本是训练集,其他样本是测试集。在选定的scout上对所提出的CNN架构进行了十次训练和测试,以验证所提出模型的鲁棒性。图8(a)显示了10个scout中每个的全局平均精度。图8 统计结果R5的全局平均精度最高,达到94.5%,而L2的全局平均精度最低,为91.3%。对应L1、L3、L4、L5、R1、R2、R3、R4的整体准确率分别为92.4%、92.5%、93.6%、91.9%、93.0%、91.8%、92.1%、92.6%。所有scout的总体精度均在91%以上,标准差均在0.20%以下。图8(b)显示了十个scout中每个scout四个MI任务的组级统计结果及其标准差。一般来说,R5表现的要比其他的好,而L2在迭代2000中表现最差。标准差较小,说明这些精度更接近平均值且稳定。图9 统计结果图9(a)显示了带有标准差的混淆矩阵,说明了group level分类结果。T1、T2、T3和T4的全局平均精度峰值分别为95.3%、93.3%、93.6%和96.0%。R5 scout的四个MI任务中的每一个都如图9(b)所示。通过改变训练集和测试集顺序的10次试验,确定了scoutR5的性能,结果如图10(a)和(b)所示。在10次试验中,scout R5的T1、T2、T3、T4的平均准确率分别为93.3%、93.8%、94.2%、94.1%。换句话说,四个任务中每一个的平均准确率都超过了93%。全局平均准确率为93.7%。10次试验结果表明,该方法对scout R5的分类效果较好。从以上结果可以清楚地看出,R5 scout在四种MI任务的分类中扮演着最重要的角色。因此,选择R5对四个MI任务进行分类。图 10图11. (a)是不同模型的全局平均准确性的比较。可以发现,该研究提出的模型可以达到最大的精度。从图11. (b)不同模型的ROC曲线可以看出提出的模型比其他模型表现更好。©不同模型T1上的精度比较。(d)不同模型T2的精度比较。(e)不同模型T3的精度比较。(f)不同型号T4的精度比较。图11 不同模型的精度比较结论东北电力大学和长春理工大学研究团队开发并实现一种结合脑电图源成像(ESI)技术和卷积神经网络(CNN)的新方法。该方法可以对运动想象(MI)任务进行分类。实验结果表明,他们的研究成果与最先进的MI分类方法的结果相比,总体分类增加了14.4%。研究者加入了4个新的受试者进行验证来验证方法的有效性。研究者表示,他们提出的结合scout ESI和CNN的方法,提高了脑电解码四类MI任务的BCI性能。论文信息:A novel approach of decoding EEG four-class motor imagery tasks via scout ESI and CNN
东北电力大学 2021-04-10
首页 上一页 1 2 3 4 5 6
  • ...
  • 537 538 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1