高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
《Science》刊发武汉理工大学傅正义院士团队材料过程仿生制备技术的创新性研究成果
近日,傅正义院士团队平航副研究员在材料过程仿生制备新技术研究方面取得创新性进展,成果以“Mineralization Generates Megapascal Contractile Stresses in Collagen Fibrils”为题,发表在国际顶级期刊《Science》(科学)上。
武汉理工大学 2022-10-13
一种核壳结构银包铁纳米粉体材料的制备方法
(专利号:ZL 201510634086.8) 简介:本发明公开了一种核壳结构银包铁纳米粉体材料的制备方法,属于双金属纳米核壳结构材料领域。该方法是将不同比例的金属铁粉和银粉压制成块体,作为等离子电弧炉的阳极材料,采用钨金属或石墨作为阴极材料,引用氩气和氢气作为工作气体,在一定的电流下,阳极和阴极之间起弧,持续一段时间后进行钝化,即得粒径为30~70nm的具有核壳结构的银包铁纳米粉体。本发明所提供的制备方法,工艺简单,流程短,易于控制,适合大规模工业生产且对环境无污染,绿色环保。  
安徽工业大学 2021-04-11
一种核壳结构银包镍纳米粉体材料的制备方法
简介:本发明公开了一种核壳结构银包镍纳米粉体材料的制备方法,属于核壳结构纳米双金属材料领域。该方法是将不同比例的金属镍粉和银粉压制成块体,作为等离子电弧炉的阳极材料,采用钨金属作为阴极材料,采用氩气和氢气作为工作气体,在一定的电流下,阳极和阴极之间起弧,持续一段时间后进行钝化,即得粒径为45~70nm的具有核壳结构的银包镍纳米粉体。本发明所提供的制备方法,工艺简单,流程短,易于控制,适合大规模工业生产且对环境无污染,绿色环保。
安徽工业大学 2021-04-11
一种基于子结构的复合材料弹性参数识别方法
本发明提供了一种基于子结构的复合材料弹性参数识别方法,建立复合材料子结构有限元模型,根据子结构理论对复合材料子结构模型进行动力学缩聚;缩聚后子结构特征矩阵装配到残余结构上,计算得到复合材料全模型模态信息;提取全模型模态数据,计算模态频率对残余结构弹性参数的相对灵敏度;将试验和有限元模拟的模态频率残差的二范数作为目标函数,利用迭代优化算法最小化目标函数。本发明通过考虑了子结构的复合材料建模,将模型待识别部分定义为残余结构,通过全模型模态频率对残余结构弹性参数的相对灵敏度分析和模态振型匹配,采用优化迭代算法识别复合材料待识别参数,节省计算资源,提高计算效率,具有十分重要的工程意义。
东南大学 2021-04-11
一种叶片状CuO‑NiO复合结构纳米材料及其制备方法
本发明公开了一种叶片状CuO-NiO复合结构纳米材料及其制备方法。用硝酸镍和碳酸钠(或碳酸氢钠)进行微波反应,得含镍沉淀物,然后煅烧获得NiO纳米粉。称取0.05g?NiO,加入到30mL含一定量醋酸铜水溶液中,超声分散20~30分钟,得分散液A;称取2mmol?NaOH,加入30mL去离子水,溶解得溶液B;将溶液B加入到分散液A中,磁力搅拌15~25分钟,反应混合液置于家用微波炉中,设置低火档加热20分钟;反应结束后,自然冷却,抽滤干燥,即得本发明的叶片状CuO-NiO复合结构纳米材料。叶片状Cu
安徽建筑大学 2021-01-12
一种结构可控的三维石墨烯多孔材料制备方法
构建三维多孔结构 CAD 模型,并通过增材制造技术制得相应形 状的三维多孔金属结构;在惰性气体的保护氛围下,将所制得的三维 多孔金属结构升温至 900℃~1500℃,然后冷却至室温;然后进行喷 砂和超声清洗处理以获得金属模板;通过化学气相沉积法在金属模板 上生长石墨烯薄膜;配置腐蚀液并在 60℃~90℃的温度下回流溶解金 属模板,经洗涤和干燥处理后即得到三维石墨烯多孔材料产品。通过 本发明,能够有效克服现有技术中所存
华中科技大学 2021-04-14
基于聚类分析的复合材料结构有限元模型修正方法
本发明提供了一种基于聚类分析的复合材料结构有限元模型修正方法,建立初始有限元分析模型,测得结构的实验模态频率和模态振型,计算待修正参数的相对灵敏度矩阵,利用分层聚类算法对待修正参数进行参数分组,再对聚类参数进行相对灵敏度分析,选择各参数中相对灵敏度平均值最大的聚类参数进行修正,构造分析模型的模态频率和实测模态频率的残差向量,建立分析模型修正所需的目标函数,构建目标函数的优化反问题对复合材料结构的有限元模型进行修正。本发明结合数值模拟、试验和优化技术,采用参数的相对灵敏度矩阵进行聚类分析,减少待修正参数数量,提高修正程序稳定性,为工程应用提供了一种准确的基于数值模拟、试验和优化相结合的复合材料等效有限元模型参数修正方法。
东南大学 2021-04-11
装配式结构功能一体化围护体系关键材料开发
开发出了FCST(负离子超疏水防护涂层)、SGNF(SiO2高耐沾污耐腐蚀涂层)、FFT(防辐射涂层)等材料的应用技术。进一步优化了UHPDC材料体系和工艺技术路线,同步提升材料强度和韧性。开发出了建筑信息模型(BIM)信息系统,实现装配式建筑设计、生产、施工等全过程信息的融合,打造UHPDC产品先进设计及柔性化、智能化制造生产线。抗压强度120-150 MPa;抗折强度10-20 MPa;抗弯极限强度≥30 MPa;50次冻融表面无破坏;热阻≥0.9(m2 K)/W(厚度30-50mm);燃烧等级A级;水接触角<15°,表面亚甲基蓝降解率≥90%。本研究开发成果集科技、绿色、艺术于一身,融结构与功能于一体,通过项目实施,能够推动建筑材料、建筑、环保、文化等产业的融合升级和产业链的延伸。 项目已完成中试,产品进入小批量生产及销售阶段,填补国内空白。经国家化学建筑材料测试中心、江苏省建材建工检测中心和中国科学院理化技术研究所测试,各项性能指标均达到设计要求;产品在南京青奥中心、上海迪斯尼、武汉辛亥革命纪念馆、上海钱学森图书馆、唐山第三空间工程、卡塔尔图书馆、阿尔及利亚嘉玛大清真寺等中应用,获得好评。
南京工业大学 2021-01-12
中国科大研制各向同性全生物质仿生木材
近日,中国科学技术大学俞书宏院士团队通过深入解析生物质微观结构,提出了一种利用生物质天然纳米结构的全新的生物质表面纳米化策略,基于这种策略构筑了一种可持续新型各向同性仿生木材(“RGI-wood”)。该策略巧妙地利用了木屑等生物质中天然的纤维素纳米纤维,将其暴露在木屑颗粒表面,并使其互相交联从而构筑无需任何粘合剂的高性能人造木材。运用这种策略所制备的人造木材在各方向上具有相同的力学强度,且超越了实木材和传统人造板。这种新型人造木材自下而上的制备方式使其在尺寸上将不受限制,可以克服大块实木材料的稀缺性,大大拓宽了这类木质材料的应用范围。另外,其还表现出优异的阻燃性性和防水性。在这种高性能人造木材中,微米级木屑颗粒的暴露着大量的纳米尺度的纤维素纤维,这些纳米纤维通过离子键、氢键、范德华力以及物理纠缠等相互作用结合在一起,微米级的木屑颗粒也被这些互相缠绕的纳米纤维网络紧密地结合一起形成高强度的致密结构,而无需添加任何粘结剂。这种结构特征带来了高达170 MPa的各向同性抗弯强度和约10 GPa的弯曲模量,远超天然实木的力学强度。此外,新型人造木材还显示出优异的断裂韧性,极限抗压强度,硬度,抗冲击性,尺寸稳定性以及优于天然木材的阻燃性。作为一种全生物基的环保材料,新型人造木材不仅不含任何粘结剂,还具有远超树脂基材料和传统塑料的力学性能,因此具有非常广泛的应用前景。 此外,这种由纳米纤维构成的网络也为制备木基纳米复合材料提供了一种新途径。通过将碳纳米管(CNT)掺入木屑颗粒间的纳米网络当中,可以获得导电智能人造木材,因碳纳米管能够在其中形成连续的三维网络,因此其具有比传统聚合物/碳纳米管复合材料更好的导电网络和更高电导率。基于这种智能人造木材的高导电性,它可以实现传感、自发热以及电磁屏蔽等多种应用。这种智能人造木材表现出了出色的电磁屏蔽性能(X波段超过90 dB),可以满足精密电子仪器屏蔽标准的要求。这种智能人造木材还可以在1.75 V低电压下(约等于两节五号电池的电压)实现自发热,可在5分钟内升至60摄氏度,这种在低电压下即可自发热木材可有效地确保自加热设备的安全性,同时减少能耗。 这项研究提出了一种生物质颗粒表面纳米化方法和策略,可用于构筑全生物质,不含任何粘结剂,具有优异的力学性能,可复合的新型人造木材。同时,这种全新的生物质表面纳米化策略也可以扩展到其他生物质(例如,树叶、稻草和秸秆等),并可以实现多功能化,有望用于制造一系列绿色全生物质的可持续结构材料,将进一步推动人造板行业向绿色、环保和低碳方向发展。
中国科学技术大学 2021-02-01
中国科大研制各向同性全生物质仿生木材
项目成果/简介:近日,中国科学技术大学俞书宏院士团队通过深入解析生物质微观结构,提出了一种利用生物质天然纳米结构的全新的生物质表面纳米化策略,基于这种策略构筑了一种可持续新型各向同性仿生木材(“RGI-wood”)。该策略巧妙地利用了木屑等生物质中天然的纤维素纳米纤维,将其暴露在木屑颗粒表面,并使其互相交联从而构筑无需任何粘合剂的高性能人造木材。运用这种策略所制备的人造木材在各方向上具有相同的力学强度,且超越了实木材和传统人造板。这种新型人造木材自下而上的制备方式使其在尺寸上将不受限制,可以克服大块实木材料的稀缺性,大大拓宽了这类木质材料的应用范围。另外,其还表现出优异的阻燃性性和防水性。在这种高性能人造木材中,微米级木屑颗粒的暴露着大量的纳米尺度的纤维素纤维,这些纳米纤维通过离子键、氢键、范德华力以及物理纠缠等相互作用结合在一起,微米级的木屑颗粒也被这些互相缠绕的纳米纤维网络紧密地结合一起形成高强度的致密结构,而无需添加任何粘结剂。这种结构特征带来了高达170 MPa的各向同性抗弯强度和约10 GPa的弯曲模量,远超天然实木的力学强度。此外,新型人造木材还显示出优异的断裂韧性,极限抗压强度,硬度,抗冲击性,尺寸稳定性以及优于天然木材的阻燃性。作为一种全生物基的环保材料,新型人造木材不仅不含任何粘结剂,还具有远超树脂基材料和传统塑料的力学性能,因此具有非常广泛的应用前景。 此外,这种由纳米纤维构成的网络也为制备木基纳米复合材料提供了一种新途径。通过将碳纳米管(CNT)掺入木屑颗粒间的纳米网络当中,可以获得导电智能人造木材,因碳纳米管能够在其中形成连续的三维网络,因此其具有比传统聚合物/碳纳米管复合材料更好的导电网络和更高电导率。基于这种智能人造木材的高导电性,它可以实现传感、自发热以及电磁屏蔽等多种应用。这种智能人造木材表现出了出色的电磁屏蔽性能(X波段超过90 dB),可以满足精密电子仪器屏蔽标准的要求。这种智能人造木材还可以在1.75 V低电压下(约等于两节五号电池的电压)实现自发热,可在5分钟内升至60摄氏度,这种在低电压下即可自发热木材可有效地确保自加热设备的安全性,同时减少能耗。 这项研究提出了一种生物质颗粒表面纳米化方法和策略,可用于构筑全生物质,不含任何粘结剂,具有优异的力学性能,可复合的新型人造木材。同时,这种全新的生物质表面纳米化策略也可以扩展到其他生物质(例如,树叶、稻草和秸秆等),并可以实现多功能化,有望用于制造一系列绿色全生物质的可持续结构材料,将进一步推动人造板行业向绿色、环保和低碳方向发展。
中国科学技术大学 2021-04-11
首页 上一页 1 2
  • ...
  • 15 16 17
  • ...
  • 313 314 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1