高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
世界纪录效率全钙钛矿叠层太阳能电池
利用钙钛矿材料制备高效率低成本太阳电池 一、项目分类 重大科学前沿创新、关键核心技术突破 二、成果简介 南京大学现代工程与应用科学学院谭海仁教授团队瞄准“碳达峰、碳中和”国家重大需求,致力于高效率新型光伏技术的基础和应用研究,两年内连续四次创造全钙钛矿叠层太阳电池光电转换效率的世界纪录,并被国际权威的《Solar cell efficiency tables》收录。 2019年,研究团队率先突破全钙钛矿叠层制备瓶颈,提出新型隧穿结结构,实现了器件制备过程的大幅简化和性能的大幅提升,最终实现了24.8%的光电转换效率;2020年,团队通过材料改性和结构优化实现了大面积叠层电池24.2%的效率。 近期,研究团队提出增强窄带隙钙钛矿晶粒表面缺陷钝化的新策略,叠层电池经国际权威机构认证其转换效率高达26.4%。同行专家高度评价该研究工作“在利用钙钛矿材料制备高效率低成本太阳电池中迈出了重要的一步”。 相关成果发表于Nature (2022)和Nature Energy (2019、2020)等国际顶级期刊,入选“中国半导体十大研究进展”和“中国光学十大进展”,部分技术已实现科技成果转化,推动了我国新型钙钛矿太阳电池的产业化。
南京大学 2022-08-12
低成本非真空铜铟硒(CIGS)薄膜太阳电池制造技术
CIGS薄膜太阳电池具有效率高,无衰退、抗幅射、寿命长等特点,采用非真空技术可以进一步降低这种电池的成本,预计可达到0.6$/W。 本项目产品结构为:衬底/Mo/CIGS/CdS/i-ZnO/ZnO:Al/Ni-Al;其中光吸收层CIGS薄膜为p型半导体,其表面贫Cu呈n型与缓冲层CdS和i-ZnO共同成为n层,构成浅埋式p-n结。太阳光照射在电池上产生电子与空穴,被p-n结的自建电场分离,从而输出电能。工艺流程:普通钠钙玻璃清洗→Mo的溅射沉积→非真空法沉积CIGS薄膜预置层→快速
南开大学 2021-04-14
一种燃料电池膜电极组件的层合装置及其方法
本发明公开了一种燃料电池膜电极组件的层合装置,包括:分别沿着不同输送路径输送两组复合膜层的第一和第二输送机构,对两组复合膜层执行层合处理的层合机构,对层合后膜层执行对齐检测的对齐检测机构,以及对齐调整单元;其中第一、第二输送机构分别用于输送对应模切有多个模切框的第一、第二复合膜层;对齐检测机构用于对层合后膜层采集其模切框图像;对齐调整单元根据对齐检测机构所获得的模切框图像,计算其间距值并相应调整第二输送机构的输送调节,从而实现两组复合膜层的对齐及层合。本发明还公开了相应的层合方法。通过本发明,可以使
华中科技大学 2021-04-14
基于微纳光学结构的太阳能电池高效陷光技术
 太阳能发电是未来可再生能源的重要领域,提高太阳能电池对太阳光的利用效率、进一步提高太阳能电池的光伏效率,已经成为光伏领域的重要课题。太阳能电池的本征吸收层很薄,甚至小于光的波长,使得进入太阳能电池光子的光程很短,成为除材料以外,制约太阳能电池进一步提高光伏效率的重要因素。为了提高光子在太阳能电池本征吸收层中的吸收率,需要研究在降低电池表面反射的同时,延长光子在本征吸收层的光程,实现高效陷光。 本项目基于微纳光学理论和微纳结构加工技术,提出了“低表面反射+低光能逃逸+高效延长光程”的高效超陷光机制,设计了具有“低表面反射率+低光能逃逸+高效延长光程”的高效超陷光结构。利用宽带陷光技术研发的宽带陷光光伏玻璃,在380nm~1200nm波长范围内,具有高于40%的雾度。宽带陷光光伏玻璃基片应用于硅叠层薄膜太阳能电池, 在380nm~1200nm波长范围内,对于准垂直入射光的反射率小于3%. 在AM1.5测试环境下,太阳能电池光伏效率比较没有陷光结构光伏玻璃的太阳能电池相对提高5%。以上。 基于微纳光学结构的太阳能电池高效陷光技术,在太阳能电池、太阳能电池组件封装中具有广泛的应用前景,对于提高太阳能电池及其组件的光伏效率具有重要意义。
上海交通大学 2021-04-13
一种无机钙钛矿太阳能电池及其制备方法
本发明属于微纳制造技术领域,并公开了一种无机钙钛矿太阳 能电池,包括导电基底、电子收集层、光吸收层、空穴传输层和碳对 电极层,导电基底包括玻璃基片及两块 FTO 导电层,两块 FTO 导电层之间具有分隔槽;电子收集层包括致密 TiO2 层和介孔 TiO2 层,致 密 TiO2 层沉积在玻璃基片的分隔槽处和其中一块 FTO 导电层的上表 面上。
华中科技大学 2021-04-14
诺为 N93 空中键鼠 ppt迷你键盘 锂电池充电
产品详细介绍
上海诺为电子科技有限公司 2021-08-23
用于氯代挥发性有机物低温催化燃烧的催化剂及制备方法
本发明涉及化学催化剂制备技术,旨在提供一种用于氯代挥发性有机物低温催化燃烧的催化剂及制备方法。该催化剂是以γ‑Al2O3颗粒为载体,以NM‑RMO‑Co3O4为活性组分;其中,RMO‑Co3O4占催化剂重量的5~15%,NM占催化剂重量的0.01%~0.2%,余量为γ‑Al2O3颗粒;所述RMO为稀土金属氧化物CeO2、ZrO2、La2O3、Nd2O3、Y2O3中的一种或几种,NM为贵金属Pd、Pt、Ru、Rh中的一种或几种。本发明提供的催化剂具有制备工艺简单、价格低廉、催化活性高、抗氯中毒能力强、寿命长等优点。采用该催化剂,可以在低温空气环境中,长时间稳定地将含氯挥发性有机物转化为CO2和HCl,且技术路线方便实用,可广泛应用于工业含氯有机废气的治理。
浙江大学 2021-04-13
低温流动层法制备碳氮化物涂层的关键技术在精密模具上应用
为了解决高精度模具表面强化处理变形和高温技术在工业大规模推广应用中的瓶颈问题,本项目提出利用低温流动层法进行碳氮化物涂层制备的方法,应用于高精密模具表面强化处理。通过气流与粉末在600℃左右形成左右的流动层的热辐射特性,在高精密模具表面制备高耐磨高耐蚀的碳氮化物涂层,是由碳化物和氮化物复合而成,兼具碳化物和氮化物的优点,具有高熔点、高硬度、耐磨、耐氧化、耐腐蚀等特性,并具有良好的导热性、导电性和化学稳定性,适用于要求较低的摩擦系数和较高硬度高精密模
常州大学 2021-04-14
一种适于低温烧结的M型锶铁氧体SrFe12O19的制备方法
(专利号:ZL 201410446644.3) 简介:本发明公开了一种适于低温烧结的M型锶铁氧体SrFe12O19的制备方法,属于铁氧体材料制备技术领域。本发明所提供的方法是以蛋清蛋白粉作为金属离子配合物的溶胶-凝胶法为基础,采用蛋清蛋白粉、硝酸铁和硝酸锶作为原材料,经过制备前驱体粉末和1100℃低温烧结等过程,制备SrM铁氧体。采用该制备方法,不仅能较大幅度降低烧结温度、实现节能减排,而且制备过程对环境无污染、绿色环保。本发明适用于制备
安徽工业大学 2021-01-12
美国Lake Shore 211低温监测仪表 1.4 K-800 K 单通道传感器输入
美国Lake Shore 211温度监视器 产品介绍:     Lake Shore公司单通道211型括报警器、继电器、模拟电压或电流输出端口(用户可配置)及一个串口。对于液化的气体储存及温度监测、低温泵控制、低温制冷机、材料科学应用。 产品介绍:     Lake Shore公司单通道211型号温度监控器是一种高精度、高分辨率、结构紧凑的台式温度监控器,具有接口功能,易于使用和集成。与合适的传感器配合使用,211测量温度范围从1.4 K到800 K,对在高真空下和磁性下的温度均可以进行测量。211的标准配置包括报警器、继电器、模拟电压或电流输出端口(用户可配置)及一个串口。对于液化的气体储存及温度监测、低温泵控制、低温制冷机、材料科学应用、以及精度要求比热电偶更高的应用,211都是不错的选择。   主要特点 • 使用合适的传感器,操作温度zui低可以达到1.2K • 单通道传感器输入 •支持二极管和电阻温度传感器 • 0 V to 10 V 或4 mA to 20 mA 标准工业输出 • 大屏5位LED 显示器 • RS-232C串口、报警和继电器 • CE认证 传感器输入读取能力 美国 Lake Shore 211型温度监视器支持二极管温度传感器和电阻型温度传感器。可以通过211的前面板来设置输入传感器的类型。为了确保测量的高精确性和5位的显示分辨率,211在进行温度测量时采用4线法,使用24位的模-数转换器。 美国 Lake Shore 211根据传感器的温度响应曲线,将电压或电阻转换成温度。硅二极管和铂电阻温度传感器的标准温度曲线包含在211的固件中。211中还有一个非易失性存储器,可用来储存一条200个点的用户曲线,此曲线可以通过串口写入到211中。 接口 美国 Lake Shore 211温度监视器带有一个RS-232C串口及其它的接口特性,作为一个独立的监视器,可以很容易集成到其它系统,这是非常有价值的。211的每个功能都可以通过它的串口或前面板进行设置。温度数据通过串口zui多每秒可以读取7次,前面板显示每秒更新2次。高和低的警报功能可以在锁定模式下,用于误差极限检测;也可以在非锁定模式下,与继电器配合使用,执行简单开-关控制功能。模拟输出可以配置为0-10V或者4-20mA。  
北京锦正茂科技有限公司 2022-11-10
首页 上一页 1 2
  • ...
  • 82 83 84
  • ...
  • 104 105 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1