高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
复杂难采矿体安全低损开采技术
针对地下开采深度不断增加,地下采空区体积日益增多,地压区残留矿等复杂难采矿体难以回采的难题开展研发,本成果主要技术内容如下:(1)建立了钨矿山地压与残留矿体可回采性的定量评价体系。(2)研发了复杂采空区三维模型和稳定性计算分析集成化分析方法。(3)研发了基于能量分析法的钨矿山难采矿体回采方案判别技术。该技术已在赣南钨矿山、铜陵凤凰山铜矿、焦冲金矿、太白金矿等十多个矿山进行了应用,取得了显著的经济和社会效益。
江西理工大学 2021-05-04
低盐腌腊肉制品生产技术
腌腊肉制品以其独特的风味深受消费者欢迎,是肉类制品中的一大类产品。 腌腊肉制品为了达到较长的保藏期,往往采用高盐或较高程度的干燥进行加工, 影响了产品的口感、质构、风味和出品率。本研究中心开发的低盐腌制技术,利 用高效无磷持水剂,在保证产品优良保藏性的基础上,降低了盐的使用量,使其 口感更适于消费者,更有利于健康,产品出品率有了明显提高,质构得到明显改13 善。在腊肉中使用,可使其出品率从普通的 75%左右,提高到 90%左右。 本技术已在上海一企业转让,使用效果优良
江南大学 2021-04-11
高效低噪风机设计与诊断技术
机泵产品每年耗电量占全国总发电量的20%左右,是耗能大户。风机/泵在运行时,实际工况多变,如果在非设计工况下运行,会导致效率、可靠性、寿命降低。此外,噪声严重影响泵的使用效果和使用场景。 效率与振动是泵与风机等流体输送设备的主要技术指标,与此同时振动也直接影响着阀门作为流动控制部件的调节精度。现有通流部件设计更多从提高效率的角度出发的,对其振动指标缺乏足够的关注,尚未形成系统的低振动通过流部件设计方法。本技术在过流部件设计上突破现有模型库和设计理念,通过研究流体机械内部流动机理、液力过程及能量转换机理,利用CFD分析和三元流设计工具来开发高效、低振动过流部件模型。 轨道交通风机主要应用于隧道通风排烟系统、车站通风空调系统和车辆段通风空调系统。本项目成果基于对地铁站点的典型关键风机组群进行健康状态预测性维护。能够实时、远程监测和诊断典型故障类型,适用于关键风机组群,例如隧道通风排烟系统和车站通风空调系统的风机设备,包括区间隧道风机、车站排热风机、车站通风空调系统的大系统和小系统风机。本项目通过对上述轨道交通通风关键风机设备运行安全的监测和节能优化的研究,积累大量数据,并经过在试点车站的实践基础上,总结风机设备的安全导则,开发风机安全监测平台,建立风机设备的安全评价体系,最终进一步提升风机设备系统运行的安全性、可靠性和经济性,实现轨道交通安全、绿色运营。
浙江大学 2023-05-10
“双低"浓香菜籽油制备技术
 随着人们生活水平的提高, 人们对浓香菜籽油的消费需求越来越大。低齐酸、低硫音的“双低"油菜籽制备所得的菜籽油
西华大学 2021-04-14
燃烧合成氮化硅基陶瓷的产业化技术
在高技术陶瓷领域,先进陶瓷占有极其重要的地位,在诸多的先进陶瓷中,氮化硅基先进陶瓷以其高强度、高韧性、高的抗热震性、高的化学稳定性在先进陶瓷中占有独特的地位,是公认的未来陶瓷发动机中最重要的侯选材料。并且在国际上氮化硅陶瓷刀具和氮化硅基陶瓷轴承已经形成相当规模的产业。任何一个跨国刀具公司都有氮化硅基陶瓷刀具的系列产品,足见其在机加工行业中具有不可替代的地位。 但是,影响氮化硅陶瓷推广的一个主要因素,是氮化硅粉末价格昂贵,这是由于传统的制取氮化硅粉末的方法耗能高,生产周期长,生产成本高。本项目采用具有自主知识产权的创新的燃烧合成技术,制取氮化硅陶瓷粉末和氮化硅复合粉末,具有耗能低,生产周期短,杂质含量低,生产成本低等特点,具有广泛的应用前景。 燃烧合成(Combustion Synthesis,CS)又名自蔓延高温合成(Self- Propagating High-Temperature Synthesis,SHS),是利用化学反应自身放热合成材料的新技术,基本上(或部分)不需要外部热源,通过设计和控制燃烧波自维持反应的诸多因素获得所需成分和结构的产物。 自1990年以来,本项目负责人等针对燃烧合成氮化硅陶瓷产业化的一系列关键问题,在气-固体系氮化硅基陶瓷的燃烧合成热力学、动力学和形成机制等方面进行了深入研究后得到的创新成果。 采用本项目的技术,可以生产符合制作先进陶瓷要求的从全α-Si3N4相到高β- Si3N4相,及不同配比的氮化硅粉末,还可根据用户要求,用此技术生产α-Sialon,β-Sialon和其它各种氮化硅基的复合粉末。粉末的质量优良而稳定。 应用于航天、航空及机械行业等,用于制作氮化硅陶瓷刀具、氮化硅基陶瓷轴承、耐磨耐腐陶瓷涂料等。
北京科技大学 2021-04-11
燃烧合成氮化铝基先进陶瓷的产业化技术
氮化铝(AlN)陶瓷具备优异的综合性能,是近年来受到广泛关注的新一代先进陶瓷,在多方面都有广泛的应用前景。例如高温结构材料、金属溶液槽和电解槽衬里,熔融盐容器、磁光材料、聚合物添加剂、金属基复合材料增强体、装甲材料等。尤其因其导热性能良好,并且具备低的电导率和介电损耗,使之成为高密度集成电路基板和封装的理想候选材料,同时氮化铝—聚合物复合材料也可用作电子器材的封装材料、粘结剂、散热片等。氮化铝在微电子领域应用的市场潜力极其巨大。氮化铝还是导电烧舟的主要成分之一,导电烧舟大量地用于喷涂电视机的显象管等器件、超级市场许多商品包装用的涂铝薄膜,有着广泛的市场。但是,影响氮化铝基陶瓷的推广的主要因素之一,是采用传统方法合成氮化铝粉末,耗能高,生产周期长,生产成本高。本项目采用具有自主知识产权的创新技术,采用燃烧合成技术制取优质的氮化铝陶瓷粉末,具有耗能低,生产周期短,杂质含量低,生产成本低等特点,具有广泛的推广价值。 燃烧合成(Combustion Synthesis,CS)又名自蔓延高温合成(Self- Propagating High-Temperature Synthesis,SHS),是利用化学反应自身放热合成材料的新技术,基本上(或部分)不需要外部热源,通过设计和控制燃烧波自维持反应的诸多因素获得所需成分和结构的产物。 自1994年以来,本项目负责人等针对燃烧合成氮化铝陶瓷产业化的一系列关键问题,在气-固体系氮化铝基陶瓷的燃烧合成热力学、动力学和形成机制等方面进行了深入研究后得到的创新成果。 本项目来源于国家教委高校博士点专项科研基金项目(1994.3-1997.3)。 本项目以应用基础研究成果“燃烧合成氮化铝基陶瓷的应用基础研究”已于1999年通过专家函审。 采用本项目的技术,可以生产符合制作先进陶瓷要求的氮化铝粉末,还可根据用户要求,用此技术生产氮化铝基陶瓷粉末。粉末的质量优良而稳定。 氮化铝广泛应用于高温结构材料、金属溶液槽和电解槽衬里、熔融盐容器、磁光材料、聚合物添加剂、金属基复合材料增强体、装甲材料、高密度集成电路基板、电子器材的封装材料、粘结剂、散热片、导电烧舟等。
北京科技大学 2021-04-11
劣质固体燃料清洁高效燃烧与能源转换利用技术
针对劣质固体燃料难利用、难着火和难燃尽等问题,对劣质燃料燃烧技术和能源转换的关键问题进行了系列创新研究和工业应用。构建了一整套低品位劣质固体燃料清洁燃烧与高效利用的技术体系,实现了劣质煤、煤矸石、污泥、市政固体废弃物等劣质燃料的高效能源转换,技术达到了国际先进水平,显著提高了能源利用效率,取得了很好的经济效益和社会效益。创新点主要有: 1)提出了劣质固体燃料清洁高郊燃烧及能源化利用方法; 2)系统地研究了劣质固体燃料热解及燃烧特性; 3)提出了适合于劣
重庆大学 2021-04-14
富氧燃烧高效低成本运行关键技术与示范
本成果提出了一种富氧燃烧高效低成本运行关键技术与其对应示范装置。着眼于发展经济、安全和可靠的富氧燃烧技术需求,本成果重点围绕两个关键科学技术问题: (1)基于氧/燃料双向分级的富氧燃烧火焰组织、传热调控与污染抑制原理; (2)基于静/动态仿真的富氧燃烧系统集成优化和控制技术,组织共性技术研发和工程示范。 本成果建立了常压与加压富氧燃烧条件下的分级燃烧、传热和污染物控制理论,开发了常压富氧燃烧的分级燃烧系统,研制了加压富氧燃烧的燃烧、换热及返料等关键装备,突破了酸性气体共压缩纯化等共性关键技术,掌握了常压富氧燃烧的系统集成、优化与控制方法,并提升富氧燃烧大型化设计能力。 其中,运用富氧压缩S/N/Hg一体化脱除技术,SO₂/NOx/Hg脱除率分别达到99%,93%和98%;35MWth富氧燃烧工业示范连续运行168h,锅炉燃烧效率90.68%,烟气中CO₂浓度71-82%,NOx浓度(等效空气燃烧)110mg/Nm³。相比空气工况,富氧工况下脱汞效率(以ESP前为基准)和ESP除尘效率进一步提升。 图1 应城35MWth富氧燃烧工业示范装置平面图 图2 应城35MWth富氧燃烧工业示范系统及现场实时运行 【技术优势】 与现有的其它碳捕集技术,包括燃烧前、燃烧后碳捕集技术,富氧燃烧碳捕集技术的改造成本更低,系统效率更高、生成成本更低、投资与碳减排成本更低。
华中科技大学 2023-05-08
富氧燃烧高效低成本运行关键技术与示范
【研究背景】 我国以煤为主的能源禀赋决定了煤电将会在未来一段时间内充当托底角色,燃煤发电过程中产生的CO₂作为主要碳排放源,成为了“2030碳达峰、2060碳中和”愿景目标的现实约束。开发具有大规模CO₂捕集功能的新型低碳燃烧技术是实现“双碳”目标的关键。其中,富氧燃烧技术采用空分系统所产生的氧气(纯度>95%)代替助燃空气,同时采用烟气再循环调节炉膛内的介质温度和传热特性,实现烟气中CO₂高浓度富集,便于CO₂的分离与捕集,是最具发展前景的规模化碳捕集技术。 【成果介绍】 本成果提出了一种富氧燃烧高效低成本运行关键技术与其对应示范装置。着眼于发展经济、安全和可靠的富氧燃烧技术需求,本成果重点围绕两个关键科学技术问题: (1)基于氧/燃料双向分级的富氧燃烧火焰组织、传热调控与污染抑制原理; (2)基于静/动态仿真的富氧燃烧系统集成优化和控制技术,组织共性技术研发和工程示范。 本成果建立了常压与加压富氧燃烧条件下的分级燃烧、传热和污染物控制理论,开发了常压富氧燃烧的分级燃烧系统,研制了加压富氧燃烧的燃烧、换热及返料等关键装备,突破了酸性气体共压缩纯化等共性关键技术,掌握了常压富氧燃烧的系统集成、优化与控制方法,并提升富氧燃烧大型化设计能力。 其中,运用富氧压缩S/N/Hg一体化脱除技术,SO₂/NOx/Hg脱除率分别达到99%,93%和98%;35MWth富氧燃烧工业示范连续运行168h,锅炉燃烧效率90.68%,烟气中CO₂浓度71-82%,NOx浓度(等效空气燃烧)110mg/Nm³。相比空气工况,富氧工况下脱汞效率(以ESP前为基准)和ESP除尘效率进一步提升。 图2 应城35MWth富氧燃烧工业示范系统及现场实时运行 【技术优势】 与现有的其它碳捕集技术,包括燃烧前、燃烧后碳捕集技术,富氧燃烧碳捕集技术的改造成本更低,系统效率更高、生成成本更低、投资与碳减排成本更低。 【技术指标】 【资质荣誉】 获日内瓦国际发明展金奖(2017)、国际自动化学会电力工业设施奖(2017)、湖北省技术发明一等奖(2018)。
华中科技大学 2023-07-19
基于绝热燃烧条件的生物质微米燃料高温清洁燃烧方法
本发明公开了一种基于绝热燃烧条件的生物质微米燃料高温清洁燃烧方法,包括:(a)将生物质微米燃料以全密封的形式予以灌装装卸和运输,并管路输送至工业窑炉;(b)将生物质微米燃料与空气进行预混以形成粉尘云的流态形式;(c)将预混后的流态粉尘云向经由燃料喷管喷入设置在窑炉中的绝热燃烧室,由此在此相对封闭的储热空间将能量密度相对低的生物质燃料的能量聚积在其中,并执行超高温燃烧;(d)在燃烧过程中,向绝热燃烧室补水蒸汽。通过本发明,能够获得高达 1500℃以上的燃烧温度,满足多种工业或民用窑炉的加热要求,同时与
华中科技大学 2021-04-14
首页 上一页 1 2
  • ...
  • 5 6 7
  • ...
  • 700 701 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1