高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种考虑逆变型分布式电源接入的配电网故障区域定位算法
本发明公开了一种考虑逆变型分布式电源接入的配电网故障区域定位算法,包括如下步骤:(1)建立恒功率控制方式下逆变型分布式电源故障特性分析模型;(2)根据配电网中联络开关、断路器等开关器件的分布特点对配电网进行分区处理,使用图论的理论分析方法,建立配电网的图模型,并设定配电网的电流参考方向;(3)利用设定的配电网电流参考方向以及断路器处保护装置上传的故障信息,通过矩阵运算求取故障判断矩阵,实现故障区域的定位。本发明能够满足分布式电源接入,无需动作值整定,具备一定拓扑结构自适应的能力。
东南大学 2021-04-11
TTC学练训赛一体化平台
“TTC学练训赛一体化平台”(TTC:①Training and training competition学练训赛一体 ②Training and training in clouds云端学习竞赛)以知识竞赛为基础,使学生通过在该平台上学习、训练、考试一体化学习,掌握管理会计各岗位“工作过程”中的岗位技能的核心内容
广州翰智软件有限公司 2021-02-01
运动系统模型
1、参照典型人体标本及国内外经典权威教材及图谱制作,如人卫出版社丁文龙主编的《系统解剖学》、人卫出版社南京医学院主编的《人体解剖学图谱》、江苏科学技术出版社姜同喻编著的《连续层次解剖图谱》、山东科学技术出版社丁自海主译《格式解剖学》、广东科技出版社胡耀民主编的《人体解剖学标本彩色图谱》等,造型自然准确、颜色自然,满足教学需要;
张家港市华亿科教设备有限公司 2024-12-23
大连海事大学开发航海教育在线实操训练平台
新冠肺炎疫情对航海教育的冲击日渐显现。虽然各航海院校和船员培训机构的航海类教师已通过各种远程教学软件开展了理论课程教学,但是对于实践性很强的航海类实操课程来说,迫切需要能够进行网上实操训练的模拟软件。大连海事大学航海动态仿真和控制实验室尹勇教授团队联手大连海大智龙科技有限公司,搭建了远程航海教育在线实操平台,日前正式上线了电子海图显示与信息系统(ECDIS)、雷达/ARPA模拟实训软件、全球海上遇险与安全系统(GMDSS)、智能配载、船舶操纵与避碰、船舶消防训练模拟、救生艇筏收放模拟、锚机缆机等甲板机械操作模拟等十几种模拟实训软件和资源包。疫情期间,国内外各航海类兄弟院校及各企事业单位均可免费使用。尹勇介绍说,实操训练课是为了增强学生的专业技能、提高动手能力而设置的实践技能操作课,在航海类学生教学中占有重要地位。为响应国家“停课不停教、停课不停学”的号召,2月10号复工后,实验室教师和海大智龙公司的开发人员迅速确定了航海教育在线实操训练平台的系统框架和开发方案。经协力攻关,用30天时间就快速整合了实验室和公司现有的成熟实操类产品,搭建了远程航海教育在线实操平台,解决了目前航海教学和培训单位的航海类实训教学无法开展的难题。 平台推出的中英文版本系列在线实训产品完全满足海员培训发证和值班国际公约(STCW)公约、《中华人民共和国海船船员培训大纲》及《中华人民共和国海船船员适任评估规范》中关于船员培训与评估的相关要求。“之所以能这么快开发上线,是因为大连海事大学在这方面有近20年的积累,这次开发的线上资源,操作页面和内容与实验室里学生使用的软件一模一样,学生可以不受地域和开放时间的限制,随时随地进行相关的训练。”登录航海教育在线实操训练平台,可以看到多种不同内容的学习系统。智能配载计算机在线学习系统内包括散货船、液货船、集装箱船、多用途船等多种船型,可用于航海类学生上课及沿海航区及无限航区三副及大副培训;JRC雷达在线训练系统采用分层显示、图像裁剪、岸线数据简化等技术,模拟真实雷达的各项功能,研发了“无纸化”雷达人工标绘仿真系统;GMDSS在线学习系统可用于GMDSS无线电操作员进行GMDSS设备操作项目的培训与评估;船舶操纵与避碰在线学习系统包括仿真项目、避碰规则介绍、号灯号型训练等内容,其中的在线虚拟仿真项目包含了靠泊、离泊、对遇、追越、在航工程船避让、受限制水域及干支流交汇水域等7种典型场景的仿真模拟……
大连海事大学 2021-04-11
汽车教具自适应助力转向实操汽车教学设备
北京智扬北方国际教育科技有限公司 2021-08-23
汽车教具汽车伺服电动自适应助力转向实操
北京智扬北方国际教育科技有限公司 2021-08-23
汽车教具丰田混合动力模块静态解析实操平台
北京智扬北方国际教育科技有限公司 2021-08-23
一维集成式精密定位工作台(博实)
产品详细介绍:一维集成式工作台通过柔性铰链机构对压电陶瓷进行直接或放大驱动以实现无间隙无耦合的微位移传动,具有沿X轴方向的一维运动,行程从10um至200um。该系列微动台可集成电阻应变片以实现高精度闭环控制,并可根据客户需求定制更小尺寸的微动台。
哈尔滨工业大学博实精密测控有限责任公司 2021-08-23
应用于智能配电网的双有源桥直流变换器软启动控制方法
本发明公开了一种应用于智能配电网的双有源桥直流变换器软启动控制方法,先解锁原边全桥,闭锁副边全桥和外移相角的闭环控制,原边全桥采用斩波控制,开关管Q3和开关管Q4以50%的占空比互补导通,开关管Q1和开关管Q2采用变占空比控制,并且每个开关周期以一定的步长增加;当副边电压上升到足以驱动开关管,且开关管Q1和开关管Q2的占空比都增至0.99时,解锁副边全桥及外移相角的闭环控制;当输出电压达到额定值时,切入负载,输出电压稳定完成启动过程。本发明有效抑制双有源桥直流变换器在启动过程中的电流过冲,保证电流的正负对称,降低对开关管的耐流要求,降低成本,避免变压器偏磁现象,降低变压器的容量、体积和成本。
东南大学 2021-04-11
考虑时空关联与数据隐私性的有源配电网分布式光伏功率预测技术
(一)成果背景 分布式光伏可在用户侧就近安装与消纳,减少因长距离输送带来的线路损耗问题,在新型电力系统建设中发挥着重要作用。2021年6月,国家能源局综合司发布了《关于报送整县(市、区)屋顶分布式光伏开发试点方案的通知》,用以推动分布式光伏高质量发展、支撑新型电力系统建设。在该政策的推进下,分布式光伏容量迅猛增长。截至2021年底,国内分布式光伏装机容量已达到107.5GW,约占光伏总装机容量的三分之一,且其增长速度已经超过了集中式光伏。 (二)痛点问题 对于配电网来说,光伏出力易受天气因素影响,具有极强的随机波动特性,大规模分布式光伏接入,一方面加剧了配电网负荷短时波动,影响电力实时平衡,制约负荷预测精度提升;另一方面,分布式光伏出力特性与负荷特性的不匹配造成其难以消纳,为有源配电网运行管理带来严峻挑战。 对于电力市场交易来说,随着新一轮电力体制改革的持续深入,分布式光伏所有者作为售电商参与市场竞争成为必然趋势。分布式光伏出力的不确定性与短时剧烈波动性,使得分布式光伏电站/售电商难以制定合理的市场交易策略与电力交易合同,面临严重的市场风险。 因此,亟需精准的分布式光伏功率预测,为有源配电网调度运行、分布式光伏消纳,分布式光伏参与电力市场等提供有力数据支撑。 (三)技术方案 1、基于变分模态分解与动态图卷积网络的分布式光伏功率预测 首先利用变分模态分解各分布式光伏复杂出力序列分解为相对简单、波动较小的不同频率子序列,以减小场站间关联关系的挖掘难度。然后,基于分布式光伏场站间时空关联性处于动态变化中的考虑,利用全连接神经网络将各节点特征映射到多维空间,而后利用时域卷积挖掘跨节点关联关系,由此以数据驱动方式挖掘各频率下各场站子序列关联性,有效实现子序列动态图结构的构建。最终,基于可用于非欧式空间结构数据建模的卷积神经网络,将其与动态图结构结合,建立考虑动态时空关联性的图卷积预测模型,针对不同频率下出力子序列分别预测,而后重构得到各场站功率进而获取配电网分布式光伏总功率。 2、基于深度联邦学习的分布式光伏发电功率预测 首先,基于长短期记忆神经网络构建时域自编码器模型,该模型编码器用于提取每个时间步输入的时域特征,而后利用解码器将该特征向量转换为输出序列进行未来时间步的预测,自编码能显著增强长短期记忆神经网络的时域建模能力。而后,利用注意力机制解决其在处理长输入时间序列时会导致解码器面临特征冗余问题,且使模型聚焦于对输出更关键的时域特征。由此,利用注意力自编码预测模型通过对时域特征的有效挖掘实现功率预测精度的进一步提升。 在此基础上,开发了用于分布式光伏功率预测的联邦学习框架,在该框架中,本地用户仅需将本地模型进行共享,无需数据的传输,而后由中央服务器进行模型的聚合以实现用户间信息共享。在各本地场站进行注意力自编码预测模型的训练;在中央服务器,基于联邦平均算法实现各本地预测模型的汇聚、全局模型的生成与下发。在保证数据隐私性的前提下取得与传统集中式机器学习训练近似的预测效果。 (四)竞争优势 1、有效表征广域分布式光伏集群间时空关联特征,实现分布式光伏功率预测精度提升。 当缺乏气象实测或预报数据时,考虑分布式光伏时空相关性可有效提升分布式光伏功率预测精度。现有研究多利用各光伏场站地理距离或者整体出力表征时空相关性。这种静态建模方式在分布式光伏出力模式长期稳定的情况下,可以取得较好的预测效果。然而,易受天气因素的影响,分布式光伏出力极易发生短时波动,因而各场站关联性处于动态变化过程。以恒定的场站间关联关系去考虑这种复杂的集群出力序列,显然无法反映天气影响下分布式光伏出力短时变化,难以实现功率预测精度的有效提升。 所提的基于变分模态分解与动态图卷积网络的分布式光伏功率预测方法,利用数据驱动方式实现挖掘各场站间关联特性的动态实时挖掘。在基础上,考虑到不同模态分量下各场站间关联关系的差异性,将各场站原始功率分解为了相对简单、波动较小的不同频率模态分量,减小关联关系的挖掘难度。 2、有效保证各分布式光伏数据隐私性,且能取得与传统集中式机器学习训练方式近似的预测效果 现有的数据驱动预测方法性能在很大程度上依赖于训练数据的数量,因此大多以一种集中的训练方式实现,即中央服务器汇聚来自各场站的运行数据而后进行模型的训练。然而,这种集中训练的方式会期限数据隐私,使用户信息暴露在公共环境而导致被外部攻击者进行数据分析、行为探测等。此外,在竞争激烈的电力市场中,分布式光伏场站所有者可能不愿共享数据。这些因素使传统模型训练方式难以实现。 所提的基于深度联邦学习的分布式光伏发电功率预测方法,利用注意力自编码模型在本地场站进行建模预测,实现对本地功率时域特征的有效挖掘;利用分散式训练的联邦学习框架,实现各场站预测模型信息共享,有效保证本地用户的数据隐私的同时取得不错的预测效果。 创新点 1、考虑了场站间关联关系的动态性。对于分布式光伏,虽然场站数量众多、分布广泛,但是其位置临近,由于云团运动等气象因素导致的相关性较强。所提方法以数据驱动方式根据网络当前的各场站输入功率进行关联关系的动态表征,实现功率预测精度的有效提升。 2、在保障各分布式光伏站点数据隐私应的前提现实现信息共享。利用自编码结构进一步提升LSTM的时间序列建模能力;利用注意力机制模型聚焦于对预测更关键的输入特征,以此实现时域特征的有效挖掘。在此基础上,利用联邦学习框架聚合各本地模型,实现各站点信息聚合,实现精度有效提升。 市场前景 随着新型电力系统建设目标的推进,分布式光伏装机容量呈爆发式增长。所研成果可应用于配电网负荷预测、用户可调度容量评估、激励型需求响应基线负荷估计等场景中,为高比例分布式光伏有源配电网的安全、经济、高效运行,维持电力平衡等工作提供重要参考。同时,随着分布式光伏逐步参与到电力市场,所研成果可为分布式光伏售电商制定最优的交易策略,签订合理的价格合同提供有力数据支撑。综上所述,所研成果市场前景广阔。
华北电力大学 2023-08-10
首页 上一页 1 2
  • ...
  • 29 30 31
  • ...
  • 556 557 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1