高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种基于自适应调节基准向量的LTE信号传输系统
一种基于自适应调节基准向量的LTE信号传输系统。本发明的基于自适应调节基准向量的LTE信号传输系统解决了现有LTE系统的传输效率和传输带宽的互相受限的问题,同时也较好的解决了较高调制增益对系统传输效率的影响问题,大幅提高了频带利用率。所述系统包括发射单元、接收单元和编码向量偏移关系预设单元,其中,所述发射单元包括依次连接的第一多路变换单元、分组单元、联合发射信号生成单元、以及射频发射单元,所述接收单元包括依次连接的相关器单元、多路恢复单元、以及第二多路变换单元。
青岛农业大学 2021-04-13
固支梁T型结直接加热式微波信号检测仪器
本发明的固支梁T型结直接加热式微波信号检测仪器由传感器、模数转换、MCS51单片机和液晶显示四大模块组成,传感器由六端口固支梁耦合器,通道选择开关,微波频率检测器,微波相位检测器,直接加热式微波功率传感器级联构成;六端口固支梁耦合器的第一端口到第三端口、第四端口以及第一端口到第五端口、第六端口的功率耦合度相同,信号经第一端口输入,并由第二端口输出直接加热式微波功率传感器,由第四端口和第六端口输出微波相位检测器,由第三端口和第五端口输出通道选择开关;通道选择开关的第七端口和第八端口接直接加热式微波功率
东南大学 2021-04-14
一种导航信号数据导频联合跟踪方法及装置
本发明公开了一种导航信号数据导频联合跟踪方法及装置,包括:数据导频联合中频信号与载波数字控制振荡器(NCO)控制的本地载波相乘,完成载波剥离;载波剥离后的信号分别与码 NCO 控制的数据基带信号和导频基带信号相乘,完成码剥离;码剥离后的信号通过积分和清零处理,得到各支路相干积分结果;利用相干积分结果实现数据翻转检测和概率加权因子计算;数据翻转检测结果和概率加权因子辅助数据导频联合载波调整量估计,得到载波调整量;数据翻转检测结果和概率加权因子辅助数据导频联合码调整量估计,得到码调整量;载波调整量控制载波 NCO,实现对数据导频联合载波信号的跟踪;码调整量控制码 NCO,实现对数据导频联合基带信号的跟踪。 
华中科技大学 2021-04-11
一种用于导航信号的 LDPC 码校验矩阵的构造方法
本发明公开了一种用于导航信号的 LDPC 码校验矩阵的构造方法,包括以下步骤: (1)获取待构造的 LDPC 码校验矩阵的子矩阵的大小 z*z,以及该 LDPC 码校验矩阵的基矩阵的大小 m*n; (2)根据步骤(1)获取的结果构造 m 个由 0、1 构成的长度为 nz 位的稀疏序列[S1,S2,…,Sm],利用构造的 m 个稀疏序列得到 LDPC 校验矩阵 H。 本发明通过寻找稀疏序列的方法构造准循环校验矩阵 H,稀疏序列的后 M 位的产生方式决定了得到的校验矩阵具有近似下三角结构,使得基于 H 的编码算法更加简单。稀疏序列前 N-M 位的自身约束条件以及不同稀疏序列之间的互相关约束条件保证了校验矩阵 H 中不会出现长度为 4 的环,本方法能快速高效地构造出具有准循环特性和下三角构造的校验矩阵。
华中科技大学 2021-04-11
双通道欠采样线扫频脉冲信号的时延估计方法
本发明公开了一种双通道欠采样线扫频脉冲信号的时延估计方法,采用双通道采样信号的分数阶傅里叶域互谱进行 Chirp 脉冲时延估计,可以有效消除低采样甚至是欠采样Chirp 信号,采用传统脉冲压缩以及基于分数阶傅里叶变换的时延估计算法时,因频域或变换域频谱产生混叠造成时延估计模糊问题,并且能够以较低采样率实现信号的时延估计,有效降低接收信号的采样率和后续信号处理的运算量,并且可以通过快速傅里叶变换算法实现,计算复杂度低;此外,由于分数阶傅里叶域滤波可以抑制某些在傅里叶域无法滤除的干扰和噪声,通过分数阶傅里叶域滤波的优势,有效抑制同频信号间的相互干扰;为线扫频脉冲体制雷达对目标回波信号进行检测与估计时提供了有效的工具。
安徽理工大学 2021-04-13
手机信号屏蔽器学校考场监狱看守所信
产品详细介绍手机信号屏蔽器(又名手机******/隔断器/抑制器/截断器/隔离器/会议信息保密机)是是我厂采用国外先进技术,针对主要针对国内高考、成人高考、自学考试及各类大专院校在考试过程中,一些不法分子利用手机作弊的现状,且同时结合各类中级、高级中学学生利用手机在上课时间乱发短信的现状,以及政机关、企业各类大中小型会议室、音乐厅、影剧院等严肃的场所中手机所带来的烦恼和吵杂根据国内移动通信实际情况精心研制成功的高科技产品,它能在半径1—20米范围(50-250平方米)内隔断GSM/CDMA/DCS/PHS/3G手机信号,使手机无法打出和接听,但又不会干扰其它电子教学设备工作,手机离开隔断范围,即可恢复正常使用。还学校一份洁净,还会议一份宁净。 ※产品特点※ 1、  屏蔽GSM/CDMA/DCS/PHS/3G五路频段 2、  采用铝合金拉丝外壳,面板可以根据客户需要贴牌或丝印标志(免费提供丝印服务) 3、  发射功率4W,每根天线1W 4、  有效屏蔽距离1-20米可调(出厂前根据客户要求调试) 5、  对人体无任何损害   ※适用场所※ 1、  高考、成人高考、自学考试及各类大专院校 2、  党政机关、企业各类大中小型会议室、音乐厅、影剧院 3、  看守所、劳改队、大中小型监狱 4、  加油站、油库、油田、加气站等易燃易爆场所   ※售后服务※ 一年内包换、三年内包修   ※性能指标※     序号 技术标准 技术参数     1 CDMA/GSM频段发射频率 869-960MHz   2 DCS/PHS频段发射频率 1805-1920MHz   3 TD-SCDMA频段发射频率 2005-2035MHz   4 CDMA2000/WCDMA频段发射频率 2110-2170MHz   5 电源 电源输入AC160V-240V 输出DC 5V   6 尺寸 185mm(L)×137mm(W) ×60mm(H)   7 重量 约2000克   8 隔离范围 1-20米(约50-250平方米)   9 可作用手机类型 所有3G手机/139/138/137/136/135/133/131/130/小灵通等   10 使用环 境条件 温度 -10 to –55℃   相对湿度 ≤90%(RH)   大气压力 86-106kPa  
广州奥翼电子科技股份有限公司 2021-08-23
染整废水集中深度处理新工艺
本工艺采用染整废水集中处理,把棉、毛、丝、麻、毛巾、床单、丝织等各种各样的染整废水集中在一起进行处理。①稳定了水质,有利于生产管理;②对处理系统中一群混合的微生物来说,多种多样的营养可以培养多种多样的细菌,提高了系统的处理效率;③大规模集中处理具有规模效应,克服了各厂单独处理废水时,由于水质波动而引起的冲击以及污泥膨胀、处理效果不佳、处理成本高等弊病。特别是染整废水生物处理后排出的剩余污泥,一般采用化学处理,将含水率99%的剩余污泥浓缩至含水率为98~97%,然后投加大量无机化学凝聚剂、高分子混凝剂、石灰进行机械脱水成含水率70~80%的泥浆、泥饼,外运填埋或是焚烧。一般很难找到出路,且易造成二次污染。 本成果在集中处理的基础上,提高单元处理设备的能力,把一个曝分成三段,通过改变污泥负荷来控制污泥指数,减少剩余污泥产生该成果获中国纺织总会科技进步三等奖。
东华大学 2021-02-01
固废安全处理处置与资源化
市场背景:我国具有世界上最大的有机质废弃物产生量:城镇污泥年产量已经超过4000万吨(以含水率80%脱水污泥计,以下同),以有机垃圾、餐厨废弃物为代表的城市有机质废弃物产量超过1亿吨/年。但我国对有机质废弃物的稳定化处理与资源化处置显著落后于发达国家,目前我国主要处理处置措施仍为填埋和焚烧,对城市环境造成严重的二次污染威胁。随着欧洲等发达国家可再生能源战略的实施、国际能源危机的进一步加深、我国对大气环境及水环境质量要求的进一步提高,城镇有机废弃物的高效生物燃气化技术,尤其可以满足大型城市集中式处理处置与能源资源综合利用需要的有机废弃物干法厌氧生物制气技术,可以把有机质废弃物高效转化为生物燃气,生产清洁能源,实现废弃物的减量化和高值循环利用,已经成为目前国际上有机垃圾、城市污泥等富含有机质废弃物处理和资源化利用的重点发展方向,各国纷纷在该领域投入大量研究,抢占城市有机质废弃物资源化与能源化产业化技术的制高点。由于我国污泥泥质的特殊性,其有机质含量远低于国外、含砂量高、生物反应池负荷低等,国外传统成熟的污泥厌氧消化处理技术在我国无法得到稳定应用,造成国内大量污泥处理处置设施的故障闲置,城市污泥及有机质处理处置技术存在着重大的瓶颈性问题。 国内外现状:国内外有微波强化预处理促进低有机质污泥厌氧资源化、城市低有机质污泥的好氧堆肥研究、温和热处理对低有机质污泥厌氧消化性能的影响等相关城市污泥厌氧化资源化技术,但针对我国污泥有机质低、含砂量高、区域差异大的特点的合适的污泥资源化处理处置技术却鲜少,本技术方案突破了传统厌氧消化要求进料含固率为5%的技术要求,实现了将进料含固率提升至10%~20%实现连续稳定厌氧消化的可行性与调控措施,并在国际上较早报道了脱水污泥直接实现厌氧消化的连续流试验结果,并提出了高含固体系下污泥与餐厨等城市有机质废弃物的协同厌氧消化调控技术,创造性的提出了适用于我国典型低有机质污泥高含固厌氧消化的技术路线。 目前本项目组针对我国污泥低热值的泥质特点,开发了适用于生污泥与消化污泥的热解/焚烧耦合技术,并形成核心装备,解决了污泥及工业固废高效热化学处理的技术难道与成套装备。
同济大学 2021-02-01
固废安全处理处置与资源化
项目成果/简介:市场背景:我国具有世界上最大的有机质废弃物产生量:城镇污泥年产量已经超过4000万吨(以含水率80%脱水污泥计,以下同),以有机垃圾、餐厨废弃物为代表的城市有机质废弃物产量超过1亿吨/年。但我国对有机质废弃物的稳定化处理与资源化处置显著落后于发达国家,目前我国主要处理处置措施仍为填埋和焚烧,对城市环境造成严重的二次污染威胁。随着欧洲等发达国家可再生能源战略的实施、国际能源危机的进一步加深、我国对大气环境及水环境质量要求的进一步提高,城镇有机废弃物的高效生物燃气化技术,尤其可以满足大型城市集中式处理处置与能源资源综合利用需要的有机废弃物干法厌氧生物制气技术,可以把有机质废弃物高效转化为生物燃气,生产清洁能源,实现废弃物的减量化和高值循环利用,已经成为目前国际上有机垃圾、城市污泥等富含有机质废弃物处理和资源化利用的重点发展方向,各国纷纷在该领域投入大量研究,抢占城市有机质废弃物资源化与能源化产业化技术的制高点。由于我国污泥泥质的特殊性,其有机质含量远低于国外、含砂量高、生物反应池负荷低等,国外传统成熟的污泥厌氧消化处理技术在我国无法得到稳定应用,造成国内大量污泥处理处置设施的故障闲置,城市污泥及有机质处理处置技术存在着重大的瓶颈性问题。 国内外现状:国内外有微波强化预处理促进低有机质污泥厌氧资源化、城市低有机质污泥的好氧堆肥研究、温和热处理对低有机质污泥厌氧消化性能的影响等相关城市污泥厌氧化资源化技术,但针对我国污泥有机质低、含砂量高、区域差异大的特点的合适的污泥资源化处理处置技术却鲜少,本技术方案突破了传统厌氧消化要求进料含固率为5%的技术要求,实现了将进料含固率提升至10%~20%实现连续稳定厌氧消化的可行性与调控措施,并在国际上较早报道了脱水污泥直接实现厌氧消化的连续流试验结果,并提出了高含固体系下污泥与餐厨等城市有机质废弃物的协同厌氧消化调控技术,创造性的提出了适用于我国典型低有机质污泥高含固厌氧消化的技术路线。 目前本项目组针对我国污泥低热值的泥质特点,开发了适用于生污泥与消化污泥的热解/焚烧耦合技术,并形成核心装备,解决了污泥及工业固废高效热化学处理的技术难道与成套装备。应用范围:项目已经进入示范运行阶段,在长沙(基于热水解预处理的高含固污泥厌氧消化工程,500吨/天)、镇江(污泥热水解+污泥/餐厨高含固协同厌氧消化工程,260吨/天)、丽水(市政与工业污泥热解/焚烧耦合无害化处理,100吨/天)等地建立了示范工程,取得了良好的运行效果。 通过本技术的应用实行,市政污泥及城市有机质高级协同厌氧消化制气技术的研发及产业化有助于解决我国有机质废弃物处理设施普遍存在的厌氧消化产气率低、降解率低的问题,在原有工艺基础上提供更高的生物质能源利用率。既可以解决城镇污泥及其他城市有机质的处理处置问题,又实现资源的充分利用和能量流的最大化循环,突破了我国在生物质能这一重大国际热点新能源领域的技术与产业竞争力,具有重要的社会和创新效益。项目阶段:其他(进入示范运行阶段)效益分析:技术亮点:该项研究工作突破了传统厌氧消化要求进料含固率为5%的技术要求,实现了将进料含固率提升至10%~20%实现连续稳定厌氧消化的可行性与调控措施,提出了适用于我国典型低有机质污泥高含固厌氧消化的技术路线,解决了我国城市不同废弃物在高含固的条件下实现协同厌氧消化问题,增加消化设施的工程效益,提高反应效率的问题,为我国城市有机质的协同消化提供了机理与技术研究的支撑,突破了国外技术垄断。在此基础上,进一步针对我国污泥低热值的泥质特点,开发了适用于生污泥与消化污泥的热解/焚烧耦合技术,并形成核心装备,解决了污泥及工业固废高效热化学处理的技术难道与成套装备。 技术优势:相较于传统消化技术,解决了我国有机质废弃物处理设施普遍存在的厌氧消化产气率低、降解率低的问题,实现了高进料含固率下的持续稳定运行,提高了单位体积产气率,从而提高了单位体积产能,在原有工艺基础上提供了更高的生物质能源利用率,从而实现市政污泥、餐厨、禽畜粪便、有机垃圾等废弃物中营养物质与能源的协调调配与高值利用。
同济大学 2021-04-10
高盐废水资源化处理技术
化工、制药、农药等行业排放的高盐废水是最难处理的一类工业废水,目前国内大多数企 业仍采用稀释生化法处理此类废水,只有少数企业采用蒸发脱盐。稀释生化不仅要消耗大量的 淡水资源,而且还增加废水的排放体积,不符合国家的污染减排政策。而蒸发脱盐不仅设备投 资高,而且运行成本也很高,且蒸发析出的盐往往会带有一些有机污染物,不能作为一般的工 业盐使用,甚至可能还要视为危险固体废物,必须委托有资质的单位进行无害化处置,费用非 常高。为了彻底解决高盐废水处理问题,本项目研究开发了高盐废水的资源化技术,即首先通 过催化氧化技术去除高盐废水中的有机污染物,然后将处理过的高盐废水用作氯碱厂生产氯气 和烧碱的原料,即实现了氯化钠的资源化利用。
华东理工大学 2021-04-11
首页 上一页 1 2
  • ...
  • 26 27 28
  • ...
  • 101 102 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1