高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
滴灌用全水溶磷酸二氢铵(5万吨/年)
成果描述:该技术与磷酸二氢钾技术类似,采用湿法稀磷酸为原料,用溶剂萃取磷酸,得到净化稀磷酸,再用氨中和,经过滤、浓缩、结晶得到全水溶MAP。该技术的优点是P2O5萃取率高,原料酸中80 %的P2O5进入到产品中。自动化程度高、产品质量好、可大规模工业化,适合大型磷肥企业,走肥盐结合道路。市场前景分析:磷酸二氢铵主要用作肥料和木材、纸张、织物的防火剂、灭火剂、阻燃剂、玻璃材料、磷酸铁锂材料和基体改进剂,也用于制药和反刍动物饲料添加剂。与同类成果相比的优势分析:产品磷酸二氢铵为白色粒状晶体。磷酸二氢铵含量在99.0 %以上,相对密度1.803,熔点190 °C,易溶于水,1 %水溶液pH值为4.5。国际先进。
四川大学 2021-04-10
低氢脆敏感性的QPT高强钢的设计与开发
发明了 Q-P-T热处理工艺技术,为实现强塑积>30GPa%新一代汽车用钢提供指导;同时 Q-P-T处理析出epsilon碳化物后氢脆敏感性因子从42.7%降低至0.6%,可满足高强钢在特殊环境下的应用。高性能钢的设计与开发,支撑宝钢全球首发钢种的研制,开发出了抗拉强度超过2000MPa的超高强度钢。
上海交通大学 2023-05-09
高湿污泥移动床高温裂解制富氢燃气技术及装备
针对高含水污泥(特别是危废)预处理成本高、二次污染严重等难题,开发了高湿污泥移动床高温裂解制富氢燃气技术和装备。采用生物质微米云燃烧提供外热源,对高湿污泥进行一体化裂解气化,巧妙利用高湿污泥的水分作为气化剂和氢源,并使得重金属玻璃化固溶于固体残渣中,减少二次污染。建成了示范,处理量为200~300kg/h,性能达到国内先进水平。 技术指标 污泥处置所得燃气中H2含量可达55%,热值在10 MJ/Nm3左右,投资回报2年。
南京工业大学 2021-01-12
内大新年第一篇Science子刊——能源材料化学研究院沈慧团队关于金属氢的研究成果在Science子刊发表
氢是元素周期表中的第一个元素,亦是宇宙中丰度最高的元素。其在宇宙演化、生命起源、分子构成、生物大分子组装、化工生产等扮演着极其重要的角色。在单个团簇中成功揭示3个“金属氢”的存在不仅深化了对含有“金属氢”纳米材料结构化学的认识,而且更为重要的是,这为我们从多维度认识氢元素的本质提供了巨大的可能。
内蒙古大学 2025-01-17
聚偏氟乙烯基电极材料及其超级电容器的制备方法
本发明涉及一种聚偏氟乙烯基扣式与卷绕式超级电容器及其电极材料制备方法。该方法包括:(1)聚偏氟乙烯混合液制备;(2)聚偏氟乙烯复合膜制备;(3)对复合膜活化处理,制得扣式与卷绕式超级电容器的聚偏氟乙烯膜电极材料。以聚偏氟乙烯膜材料为扣式与卷绕式超级电容器的电极,制备成扣式超级电容器与卷绕式超级电容器。本发明制备的电极材料,不用直接添加活性物质,其成本低、充放电速度快、工艺简单;制备的扣式与卷绕式超级电容器充放电性能好、循环寿命长;且电极材料可加工为任意大小,其厚度大约为85~120μm,符合器件小型化的要求及扩大其应用范围。
四川大学 2021-04-11
基于过渡金属基化合物的高能量密度超级电容器研发
超级电容器是一种新型绿色储能器件,拥有比功率大、充放电效率高, 寿命长等优点,在低碳经济时代展现出巨大应用前景,已经被广泛应用于电 子产品、电动汽车、混合电动汽车、无线通讯设施、信号监控、太阳能及风 力发电等领域。开发具有高能量、高循环性和低成本的超级电容器是该领域 未来重要研究之一。电极材料作为超级电容器的核心组成部分,对其储能 性能有着至关重要的影响,而具有高理论容量、低价格的过渡金属基化合物 (Fe、Co、Ni)是实现高容量、低成本超级电容器首选的电极材料。以过渡金 属基化合物为主要研究对象,对其组分及结构进行了调控,通过储能性能测 试及储能机理分析,为开发高性能、低成本的活性电极材料提供实验依据。 这一研究的开展,给组装超高能量密度的超级电容器并使其从实验室走向我们 的日常生活带来了新的前景。1. 先进性及产业化前景:提高性能、降低成本一直以来都是超级电容器发展的 主旋律,其中能量密度低是超级电容器发展面临的主要问题,因此开发出具 有高能量、成本低的超级电容器迫在眉睫。就提高性能而言,超级电容器的 电极改进是重点,主要途径是通过提高电压窗口和提高电极材料的比电容。目前针对超级电容器电极材料的研究主要集中在:(1)改进现有的电极材料;(2)开发新型电极材料;(3)改进生产工艺,实现低成本化。目前在全球范 围内达到工业化生产水平的超级电容器基本都是以双电层为储能机制的活性 碳基超级电容器,而以贋电容为储能机制的超级电容器尚处于实验室开发阶 段,因此超级电容器还有很大的发展空间。2. 对所在行业和关联产业发展和转型升级的影响:根据超级电容器的容量大小 和功率密度,可以将其用作后备电源、替换电源和主电源。当主电源发生故障 而不能正常使用时,超级电容器便起到后备补充作用,它具有寿命长、充放电快 和环境适应性强等优点。当用作替换电源时,主要应用于对环境变化有特殊要 求的场合,例如白天太阳能提供电源并对超级电容器充电,晩上则由超级电 容器提供电源。作为主电源时,主要利用超级电容的大功率密度,一般是一tin个或几个超级电容器通过一定的方式连接起来持续释放几毫秒至几秒的大电 流,放电之后,再由低功率的电源对其充电。3.   市场分析:根据IDTechEX数据统计,2014年超级电容器全球市场规模为11 亿美元,预计到2018年,超级电容器全球市场规模将达到32亿美元,年复合 增长率为31%,并预测将会以此速度预计到2018年,超级电容器全球市场规模 将达到32亿美元,年复合增长率为31%,并预测将会以此速度继续增长。我国 将“超级电容器关键材料的研究和制备技术"列入到《国家中长期科学和技 术发展纲要(2006-2020年)》,作为能源领域中的前沿技术之一。有数据显示, 2015年国内超电市场规模已经超过了 70亿元,因此,在这样的一个大背景下, 研究新材料以开发具有超高能量密度的超级电容器具有非常大的市场前景。
重庆大学 2021-04-11
一种超高速率充放电超级电容器薄膜电极的制备
高校科技成果尽在科转云
电子科技大学 2021-04-10
一种基于环境友好型纳米容器的自愈合涂层的制备方法
本发明设计了一种基于环境友好型纳米容器的自愈合涂层,属于金属防腐涂层领域。其特征在于:采用层层自组装的方法将壳聚糖和聚天冬氨酸交替沉积在纳米二氧化硅材料表面,将层层组装的纳米二氧化硅材料离心、去离子水洗、干燥,得到环境友好型纳米容器,将环境友好型纳米容器与稀释剂按照一定比例混合,超声分散得到组分一;将环氧树脂、分散剂和流平剂添加到组分一中,混合均匀后添加固化剂,得到分散均匀的自愈合涂层。采用本发明制得的自愈合涂层所用的原材料绿色环保,廉价易得;纳米容器中的缓蚀剂负载量大;在涂层破损微区,负载缓蚀剂的纳米容器能够释放出缓蚀剂分子吸附在金属表面形成保护膜,起到一定的自愈合作用。
青岛农业大学 2021-04-13
一种电化学电容器用中孔炭材料的制备方法
简介:本发明提供一种电化学电容器用中孔炭材料的制备方法,属于炭材料与微波化学技术领域。该方法以花生壳为碳源,氯化锌或磷酸为活化剂,通过微波辅助加热活化花生壳一步制备中孔炭材料,所制得的中孔炭材料比表面积介于1307-1552m2/g之间,总孔容介于0.67-1.83cm3/g之间,平均孔径介于2.06-5.02nm之间,非微孔孔容占总孔容的比例介于62.7-99.2%之间,产率介于32.3-44.9%之间。本发明中碳源是可再生的农业废弃物,具有廉价、易得的特点,微波加热具有均匀、快速、节能的优点,所制得的中孔炭作为电化学电容器电极材料,具有良好的稳定性和优异的综合性能。
安徽工业大学 2021-04-13
基于有限元分析技术的压力容器及管道的强度评定技术
1. 项目概述有限元法已经成为当今工程问题中应用最广泛的数值计算方法。ANSYS软件是经全国锅炉压力容器标准化技术委员会推荐的用于压力容器及管道强度评定分析的集结构、热、流体、电磁、声学于一体的大型通用有限元商用分析软件包。本项目应用ANSYS软件对各种复杂结构及载荷作用下的压力容器及管道进行有限元应力分析及强度评定。目前,已拥有下列结构的参数化有限元分析技术:A. 固定管壳式(含膨胀节)换热器及U形管换热器分析设计;B. 承受管道附加载荷的设备接管局部应力分析设计;C. 卡箍连接快开门结构应力分析;D. 制冷装置蒸发器、冷凝器分析设计;E. 考虑地震与风载荷的立式反应器及塔设备支座热应力分析;F. 灭菌柜设备门封头组件分析设计;G. 纺丝装置加热箱箱体分析设计;H. 刮膜式薄膜蒸发器结构分析设计;另外,在对含缺陷结构进行有限元应力分析的基础上,对压力容器及管道进行缺陷评定。2. 技术优势拥有全国锅炉压力容器标准化技术委员会颁发的压力容器SAD(应力分析设计)审核资格及常规一,二,三类压力容器审核资格,拥有正版ANSYS结构分析软件,从技术上为压力容器及管道强度评定技术提供保障。3. 技术水平传统的有限元单向建模—校核评定过程分析工作量大,设计周期长,参数化有限元分析技术是有限元分析的高级技术,本项目开展的压力容器及管道参数化有限元技术有效地提高产品设计质量和效率,提高企业开发创新和快速响应市场的能力。
南京工业大学 2021-04-13
首页 上一页 1 2
  • ...
  • 20 21 22
  • ...
  • 34 35 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1