高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
【吉林日报】相约高博会|吉林省AI赋能职业教育创新发展联盟第一次全体会议召开
5月24日下午,吉林省AI赋能职业教育创新发展联盟第一次全体会议在长春东北亚国际博览城会议中心华山厅隆重举行。来自全省职业院校、行业企业、科研机构的百余家联盟会员单位代表齐聚一堂,围绕“AI赋能职业教育创新发展”主题,共同探讨人工智能与职业教育深度融合的创新路径与实践方案。
吉林日报 2025-05-24
工厂员工更衣柜、储物柜
产品详细介绍塑料更衣柜。浴室更衣柜 以高强度ABS工程塑料为原料的全塑料更衣柜解决了木制、钢制更衣柜易腐蚀、易生锈、使用寿命短等难题. 适用于游泳馆,健身房,工矿企业,运动场、滑雪场,洗浴中心游泳馆更衣柜,防潮不生锈更衣柜,防水更衣柜,体育馆更衣柜
佟先生 2021-08-23
教室储物柜学生书包柜材质
产品详细介绍易安格学生柜 学校标配-学生书包柜介绍   虽然已离开校园多年,但是对学校这种场景还是有一种难以释怀的情感,这种情感是对一种燃放过青春记忆故地的一种不舍和思念。有幸跟随公司团队去一家学校配送学生柜,有机会看看现在的校园是怎样的一种形态。这次配送的学生柜听说有好几个叫法,或叫学校储物柜,或叫学生书包柜。反正就是让学生把课堂上不需要的书本物品,跟书包一起存放在里面,这样的话课桌上就会很简洁很整齐,从讲台上望下去,整个教室环境都会很规则有序。这些给学校配置的学校储物柜就是我觉得现在孩子幸福的原因之一。这是很先进的一种设备,作为学生书包柜使用绝对的发挥出了应有的作用。下面易安格小编就给大家展示几幅实物图,再做下简单的介绍。    学校学生柜主要适用于儿童房、学校,可以培养孩子的收纳习惯,活泼的色彩搭配锻炼孩子对色彩的认真度。柜子采用环保级颗粒板,结实耐用,贴面工艺,热压贴面精密结合,封边设计防刮防滑,开放式收纳,方便存取。炫彩系列满足孩子对色彩的喜爱,小个头大容量,可以收纳数量较多宝宝的生活物品,层数可以根据需要搭配组装,满足孩子的需要。   塑料学生柜能够满足所有要求,该系列非常灵活,你可以选择需要的颜色、抽屉和内置件,打造出最适合孩子和空间的组合。书包柜采用环保板材,结实耐用,贴面工艺,热压贴面精密结合,封边设计防刮防滑,开放式收纳,方便存取。  首先要说的是这种学生柜优越之处,整体的结构材质全部都是高质ABS工程塑料,边角没有直棱,全部都是人体工程学设计的圆边,这是对学生的一种保护,比起金属制的或其他材质的柜子,这种材质的学生书包柜更保证了学生的人身安全,以免发生磕碰时对学生造成伤害。 这种学生书包柜的另一个特点是防腐防潮、防水。整体的结构连接没有一点缝隙。内部设计有密封层和无缝连接构造。就算水冲内部空间也不会受到一点影响。柜子的连接件全都是塑料材质,但稳固性比金属的还要胜上一筹。 内部的空间足够大,除了可以放书包外,还可以放衣物等别的物品。有多种型号可供选择,也可以用在除学校外的其他一些公共场合,比如说,游泳馆、体育馆、图书馆等。   学生柜的功能性很强大,对于空间的优化也有很突出的效果,如上图在配置学生书包柜后,教室空间显得更有条理,也更加的有格调。各种色彩调节了教室的气气氛
深圳市易安格实业有限公司 2021-08-23
无管式净气型储药柜
GR系列无管净气型储药柜由风机和高效过滤系统组成。过滤器将柜内有毒气体过滤成洁净气体排出。室内的气体在柜内负压的影响下进入柜体,形成循环,达到净化空气、保护操作人员身体健康的目的。 产品特点: 节约能源:无管净气型储药柜的年消耗成本远低于传统外排通风橱。 保护环境:保护实验室内及实验室周围环境免受污染。 降低成本:采用高效过滤系统代替传统管道设施,减少占用的空间,降低设施成本。 操作简单:仅需30分钟就可安装完成,插电后就可以安全高效工作。
济南格润实验仪器有限公司 2022-06-21
高性能动力电池电极材料研发
目前在可能用于电动汽车的电化学电源中,锂离子电池最具竞争力。但目前锂离子动力电池的性能指标尚不能完全满足电动汽车的要求,其中电池比能量是制约电动汽车行驶里程的瓶颈问题,发展高比能锂离子动力电池已经成为世界各国研究的热点。同时对高比能锂离子动力电池对电极材料、电极过程、界面过程、储能机制的研究也具有重要的可科学意义。研发团队在电化学研究方法、电化学能源材料制备和性能表征、锂离子电池研究等方面具有优势,并配备了较为完善的从实验室研究到中试的研究设备。课题组配置了电极材料、高分子聚合物制备设备:各种管式炉、箱式炉、微波炉、电热烘箱、水热反应装置、球磨机、手套箱和扣式电池冲床、整体电池封口机、涂布机等;性能测试仪器设备:电化学充放电仪器、电化学恒电位仪、电化学原位研究的红外光谱、电化学原位XRD 等。也可以利用厦门大学的公用设备和条件,包括拉曼光谱、高分辨透射电镜、扫描电镜和超高真空电子能谱等。
厦门大学 2021-04-11
GET石墨电极研磨成型机
主要用于电火花加工(EDM)用石墨电极的成形及其修复。可用于模具制造及其它特种加工行业。该设备采用振动研磨的方法,利用三维复制成型的三维研具,一次研磨出三维石墨电极从而加快EDM石墨电极的制造速度。用该电极电火花加工钢模具,可以快速制造注塑模、锻模、压铸模等。工作范围:600×500×400(mm);加工进给速度:0~0.8mm/min;设备精度:±0.0
西安交通大学 2021-01-12
碳包覆纳米钛酸锂电极材料
传统的锂离子具有高比能量的特点,现在广泛用于移动电话、笔记本 电脑等通讯工具、电动工具等。但由于其安全性,循环寿命和对极限 温度耐受性等负面问题,已成为制约其在大规模储能以及电动汽车中 广泛使用的瓶颈。而上述三大问题产生的根本原因就在于现在锂离子 电池采用的负极石墨材料。我们采用独特的固相合成技术结合碳包覆 技术 (ZL. 200510030998.0), 制备了高电子导电性的纳米钛酸锂材料。 其特点:1. Li4Ti5O12 可以实现颗粒大小和形状可控,
复旦大学 2021-01-12
点焊电极先端自动检测仪
点焊电极先端自动检测仪,受南京星乔威泰克汽车有限公司委托与 支持,于2018年12月成功研制出样机。该样机利用机器视觉检测技术, 通过图像理解等技术实现点焊电极先端氧化程度的自动检测,该仪器具 有检测精度高、识别速度快、可靠性强等优点。设备可靠性高,能适应 现场复杂环境要求;测量精度和识别精度高。 (1)    测量精度:电极头直径0.05mm;研磨剩余检测5%;中央研磨剩 余检测3%。 (2)   适
南京工程学院 2021-01-12
车用燃料电池膜电极制备技术
01. 成果简介 近年来,随着氢能利用技术发展逐渐成熟,应对气候变化压力持续增大,以及氢能市场前景巨大,氢能在世界范围内备受关注,世界发达国家均将氢能及综合应用作为未来能源发展的重点方向之一。燃料电池汽车融合了内燃机汽车和纯电动汽车的优点,不仅具有零排放、高效与高功率密度的优势,而且续驶里程足够长,被业界公认为是新能源汽车的发展趋势。经过北京奥运会23辆、上海世博会的196辆燃料电池汽车的批量示范验证和多轮技术迭代优化,燃料电池汽车开始进入交通运输领域的主战场,从2013年开始,欧、美、日、韩的燃料电池汽车相继上市销售。与国外发展路径不同,我国从燃料电池商用车切入推进氢能在交通领域的应用,氢燃料电池商用车已实现小批量生产并在上海、北京、河北、广东等地示范运营。氢能行业迎来了产品孕育的发展机遇。 膜电极作为燃料电池发动机的核心部件,代表企业如美国GORE公司、英国Johnson Matthey公司。本项成果提供了一种制备膜电极的技术,创新点为:1)采用“热定型法”工艺制备催化层,优化电化学三相界面和促进多相传质,解决了传统膜电极性能低、寿命短瓶颈问题;2)发明了将质子交换膜和催化层封装在气体扩散层内的一体化膜电极产品,提升了燃料电池的一致性和可靠性,并提高了电堆生产效率。该项成果已应用于示范项目,应用情况良好。性能指标:1)面电导: >40S/cm22)拉伸强度: >35MPa3)H2渗透率:<2mA/cm24)0.6V@2.5A/cm2 (测试条件:1.5atm,70℃,空气计量数2.3,湿度80%)5)寿命:20000小时(加速老化法,10%性能衰减)02. 应用前景 燃料电池03. 知识产权 本项成果已申请专利22项。04. 团队介绍 团队在燃料电池应用研究方面已有超过20年的技术积累,在技术开发和成果转化过程中,先后获得“第十九届全国发明展览会发明奖”金奖、北京市第三届发明专利奖一等奖、“清华大学科研成果推广应用效益奖”二等奖、“第十届国际发明展览会发明奖”金奖、湖北省技术发明奖等多项奖励。负责人为副教授、博士生导师,累计在多个国际权威期刊上发表SCI论文96多篇,申请发明专利60余项。05. 合作方式 技术许可。06.联系方式 lijiaoli2016@tsinghua.edu.cn wangcheng@tsinghua.edu.cn
清华大学 2021-04-13
锂电池有机电极材料相关研究
锂离子电池目前广泛应用于各类便携式电子设备,在人类社会的信息化、移动化、智能化、社会化等方面凸显作用,并有望在电动汽车和智能电网等领域大规模应用。商品化锂离子电池的正极材料主要是无机过渡金属氧化物和磷酸盐,其中过渡金属资源大都不可再生,电池回收利用技术复杂、成本高,从长远的角度来看可能会面临资源短缺等难点问题。因此,可循环再生的电极材料开发已成为电池领域的学术前沿和重大需求。有机电极材料由于含有丰富的碳、氢、氧等元素而显现出可再生、绿色环保、低成本和高容量等优点,近年来受到了广泛的关注。有机电极材料的制备具有合成创造的特点。有机电极材料一般可以从植物中(比如玉米等作物和苹果等果蔬)直接提取或者以生物质材料为原料通过简单的方法制备得到;在有机材料提取制备、电池装配和回收过程中产生的二氧化碳又可以被植物吸收利用,因而体现了很好的循环和可再生性。然而,有机电极材料还面临着在电解液中溶解度大、导电性差、密度低等难点问题,其材料特征、作用机理、构效关系等亟待深入理解。陈军院士,1967 年生,1985-1992 年在南开大学化学系学习,先后获学士、硕士学位,并于 1992 年留校工作;1996-1999 年在澳大利亚 Wollongong 大学材料系学习,获博士学位;1999-2002 年在日本大阪工业技术研究所任研究员。自 2002 年任南开大学教授、博士生导师,2014 年入选英国皇家化学会会士(FRSC), 2017 年当选中国科学院院士,2020 年当选发展中国家科学院院士。2020 年重要锂电成果有:Nat. Rev. Chem.:实用锂电池有机电极材料的前景 Angew. Chem. Int. Ed.:紫精晶体作为锂电池正极的储能机理及结构演化 Materials Today:锂离子电池高能层状氧化物正极材料的研究进展与展望
南开大学 2021-04-13
首页 上一页 1 2
  • ...
  • 14 15 16
  • ...
  • 81 82 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1