高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种制备太阳能电池栅电极的装置及方法
本发明提供了一种制备太阳能电池栅电极的装置及方法,装置包括银浆供给装置,喷嘴高度调节模块,喷嘴,可程控的高压发生器,吸附平台,运动平台和控制单元;方法包括将太阳能基板设置于吸附平台上,制备第一栅电极和制备第二栅电极,第二栅电极的宽度大于第一栅电极的宽度;本发明利用电纺丝直写工艺打印太阳能电极;利用电场将喷嘴中的银浆拉成直径比喷嘴直径小的丝。通过控制不同的电压,喷嘴高度,和基板进给速度可控制打印出的栅线宽度和高度。电压影响一定高度下泰勒锥的稳定性。高度主要通过影响栅线在空中的固化程度来影响打印栅线的高
华中科技大学 2021-04-14
一种柔性钙钛矿太阳能电池的制备工艺
本发明公开了一种柔性钙钛矿太阳能电池的制备工艺,包括以 下步骤:1)刻蚀;2)光阳极的制备;3)碳对电极的印刷成膜:采用烘干·114·温度在 150℃以下的导电碳浆,利用丝网印刷法在柔性导电基底上制 备成膜,即得到太阳能电池的碳对电极;碳对电极的一端与 ITO 导电 层接触,另一端与 ITO 之间存在间隙,生长的 ZnO 纳米线在该间隙处; 4)钙钛矿的添加。本发明采用一种低温的制备工艺在柔性导电基底上 制备电池的光阳极。接着采用有机溶剂烘干温度在 150℃以下低温导 电
华中科技大学 2021-04-14
世界纪录效率全钙钛矿叠层太阳能电池
利用钙钛矿材料制备高效率低成本太阳电池 一、项目分类 重大科学前沿创新、关键核心技术突破 二、成果简介 南京大学现代工程与应用科学学院谭海仁教授团队瞄准“碳达峰、碳中和”国家重大需求,致力于高效率新型光伏技术的基础和应用研究,两年内连续四次创造全钙钛矿叠层太阳电池光电转换效率的世界纪录,并被国际权威的《Solar cell efficiency tables》收录。 2019年,研究团队率先突破全钙钛矿叠层制备瓶颈,提出新型隧穿结结构,实现了器件制备过程的大幅简化和性能的大幅提升,最终实现了24.8%的光电转换效率;2020年,团队通过材料改性和结构优化实现了大面积叠层电池24.2%的效率。 近期,研究团队提出增强窄带隙钙钛矿晶粒表面缺陷钝化的新策略,叠层电池经国际权威机构认证其转换效率高达26.4%。同行专家高度评价该研究工作“在利用钙钛矿材料制备高效率低成本太阳电池中迈出了重要的一步”。 相关成果发表于Nature (2022)和Nature Energy (2019、2020)等国际顶级期刊,入选“中国半导体十大研究进展”和“中国光学十大进展”,部分技术已实现科技成果转化,推动了我国新型钙钛矿太阳电池的产业化。
南京大学 2022-08-12
基于微纳光学结构的太阳能电池高效陷光技术
 太阳能发电是未来可再生能源的重要领域,提高太阳能电池对太阳光的利用效率、进一步提高太阳能电池的光伏效率,已经成为光伏领域的重要课题。太阳能电池的本征吸收层很薄,甚至小于光的波长,使得进入太阳能电池光子的光程很短,成为除材料以外,制约太阳能电池进一步提高光伏效率的重要因素。为了提高光子在太阳能电池本征吸收层中的吸收率,需要研究在降低电池表面反射的同时,延长光子在本征吸收层的光程,实现高效陷光。 本项目基于微纳光学理论和微纳结构加工技术,提出了“低表面反射+低光能逃逸+高效延长光程”的高效超陷光机制,设计了具有“低表面反射率+低光能逃逸+高效延长光程”的高效超陷光结构。利用宽带陷光技术研发的宽带陷光光伏玻璃,在380nm~1200nm波长范围内,具有高于40%的雾度。宽带陷光光伏玻璃基片应用于硅叠层薄膜太阳能电池, 在380nm~1200nm波长范围内,对于准垂直入射光的反射率小于3%. 在AM1.5测试环境下,太阳能电池光伏效率比较没有陷光结构光伏玻璃的太阳能电池相对提高5%。以上。 基于微纳光学结构的太阳能电池高效陷光技术,在太阳能电池、太阳能电池组件封装中具有广泛的应用前景,对于提高太阳能电池及其组件的光伏效率具有重要意义。
上海交通大学 2021-04-13
一种无机钙钛矿太阳能电池及其制备方法
本发明属于微纳制造技术领域,并公开了一种无机钙钛矿太阳 能电池,包括导电基底、电子收集层、光吸收层、空穴传输层和碳对 电极层,导电基底包括玻璃基片及两块 FTO 导电层,两块 FTO 导电层之间具有分隔槽;电子收集层包括致密 TiO2 层和介孔 TiO2 层,致 密 TiO2 层沉积在玻璃基片的分隔槽处和其中一块 FTO 导电层的上表 面上。
华中科技大学 2021-04-14
海尔星能系列超低温保存箱DW-86L338J
1.微电脑控制,控温精度0.1℃; 2.显示:LED显示屏,可显示箱内温度,设定温度,环境温度,输入电压。能设定高低温报警和箱内温度,具有故障提示预警功能; 3、设定温度在-40~-86℃范围调节,箱内温度均匀度≤±5℃; 4.多种故障报警(高低温报警、传感器报警、冷凝器散热差报警、环温超标报警、断电报警、开门报警); 两种报警方式(声音蜂鸣报警、灯光闪烁报警); 开机延时保护可设定时间、显示面板密码锁功能防止误操作; 5.网络功能(选配),具有RS-232、RS-485数据接口,可与计算机连接,通过计算机显示、调节箱内温度,显示报警信息,监控设备是否正常; 6.具有远程报警功能,可连接报警器到其他房间实现报警功能; 7.配备万向脚轮,灵活,可移动、可锁定; 8.“创新式”一体式门锁手把设计,可单手开关门; 9.内门手把:一体双料压铸成型,使用方便; 10、冷凝风机:高效节能冷凝风机两个,可根据环静温度实现智能开停,有效节能。环温高于20度时开启2个风机,环温高于12度低于20度时开启一个风机,环温低于12度时关闭所有风机; 11.碳氢压缩机超静音运行; 12.密封性能:内外门五层密封结构,采用耐腐蚀的橡胶材料,抗菌性能优越,密封效果好,不易结霜; 13.材料:机器箱壳采用电锌板;内胆采用δ0.8材料全防腐特殊耐低温镀锌板,加厚VIP航空隔热真空保温材料+无氟发泡剂,保温效果好,VIP厚度15mm; 14.内门:两个,每个内门具有可靠密封条,单独密封。可独立分别存取物品,以减小箱内温度波动,并有效保证物品安全保存; 15.双锁结构设计,自带暗锁,同时可用挂锁,保证用户存储物品安全性,既安全又可靠; 16. 测试孔暗管穿线设计,方便用户实验使用和监控箱内温度,告别后背凌乱传感线; 17.创新双级复叠碳氢(HC)制冷系统设计,选用HC制冷剂,含氟为0,绝对环保; 18.门开报警:通过稳定可靠的门开关,在没有关门的时候及时提醒用户,确保样本安全; 19.25℃环温时,降温速度≤5小时; 20.25℃环温时,国家第三方权威结构认证单日耗电量9.0KW.h/24h; 21.门体平衡孔设计,彻底解决短时间内连续多次开门不用等待; 22.数据下载(标配):可以通过过USB接口下载箱内设置、实时温度; 23.具有5V冷链供电接口,无须再为冷链监控温度采集模块单独配备电源 24、物联网(选配):通过无线冷链模块,可实现多台冰箱迅速联网; 25、可选配打印机,温度记录仪; 
中仪云(南京)科技发展有限公司 2026-01-15
一种Mg-In-Ag三元储氢材料及其制备方法
(专利号:ZL 201310592272.0) 简介:本发明公开了一种新型的Mg-In-Ag三元储氢合金体系及其制备方法,属于储氢材料技术领域。该储氢材料成分组成为:(Mg+In)的原子百分数为80~85%,其中In在(Mg+In)中的占比为3~6%,其余为Ag。按合金成分称取Mg块和Ag片,采用感应熔炼炉先熔炼Mg-Ag二元低熔点合金,再按配比称取In块与上述二元合金一起再次熔炼得到Mg-In-Ag三元合金;将该合金除去表面氧化皮后研磨
安徽工业大学 2021-01-12
新型稀土镍基储氢合金(AB5)电极材料及其制备方法
小型镍氢电池已产业化、商品化,大容量镍氢电池是当前电动车辆主选动力电池之一。目前国内外生产镍氢电池的负极材料,基本采用混合稀土镍基储氢合金(MmB5, Mm为混合稀土金属,B为Ni、Co、Mn、Al等金属)。 南开大学课题组首次制备了含碱金属锂(Li)新组分储氢合金[MmB5(Li)],提高了电池负极电催化活性和延长电池寿命,并获得中、美、欧发明专利(ZL 92100029.4; US 5,242,656; EP 0554617B1)。同时
南开大学 2021-04-14
一种锂硫电池正极材料及其制备方法
本发明公开一种锂硫电池正极材料及制备方法,首先分别配置溶质为含碳聚合物以及含碳聚合物与过渡金属盐的静电纺丝溶液,经过静电纺丝、碳化处理得到双层的具有柔性的原位掺杂过渡金属的碳纳米纤维基底材料,再通过升华硫/二硫化碳溶液进行液相载硫,得到负载硫的双层碳纳米纤维基底材料,然后构筑中间两层均为原位掺杂过渡金属且均匀负载硫的碳纳米纤维层的四层碳纳米纤维基底材料,然后升至150℃保温15min,随炉降温,即得锂硫电池正极材料,硫含量为40?60%。
上海理工大学 2021-04-10
一种锂离子电池正极材料及制备方法
综述了锂离子电池正极材料的工作原理,应具备的结构与性质以及目前最具有吸引力的三种正极材料LiCoO2,LiNiO2,LiMn2O4.通过比较这三种正极材料的制备方法和电化学性能,讨论了这些材料存在的问题和相应的解决方法。
昆明理工大学 2021-04-11
首页 上一页 1 2
  • ...
  • 20 21 22
  • ...
  • 283 284 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1