高等教育领域数字化综合服务平台
云上高博会服务平台
高校科技成果转化对接服务平台
大学生创新创业服务平台
登录
|
注册
|
搜索
搜 索
综合
项目
产品
日期筛选:
一周内
一月内
一年内
不限
世界纪录效率全钙钛矿叠层太阳
能
电池
利用钙钛矿材料制备高效率低成本太阳电池 一、项目分类 重大科学前沿创新、关键核心技术突破 二、成果简介 南京大学现代工程与应用科学学院谭海仁教授团队瞄准“碳达峰、碳中和”国家重大需求,致力于高效率新型光伏技术的基础和应用研究,两年内连续四次创造全钙钛矿叠层太阳电池光电转换效率的世界纪录,并被国际权威的《Solar cell efficiency tables》收录。 2019年,研究团队率先突破全钙钛矿叠层制备瓶颈,提出新型隧穿结结构,实现了器件制备过程的大幅简化和性能的大幅提升,最终实现了24.8%的光电转换效率;2020年,团队通过材料改性和结构优化实现了大面积叠层电池24.2%的效率。 近期,研究团队提出增强窄带隙钙钛矿晶粒表面缺陷钝化的新策略,叠层电池经国际权威机构认证其转换效率高达26.4%。同行专家高度评价该研究工作“在利用钙钛矿材料制备高效率低成本太阳电池中迈出了重要的一步”。 相关成果发表于Nature (2022)和Nature Energy (2019、2020)等国际顶级期刊,入选“中国半导体十大研究进展”和“中国光学十大进展”,部分技术已实现科技成果转化,推动了我国新型钙钛矿太阳电池的产业化。
南京大学
2022-08-12
基于微纳光学结构的太阳
能
电池
高效陷光技术
太阳能发电是未来可再生能源的重要领域,提高太阳能电池对太阳光的利用效率、进一步提高太阳能电池的光伏效率,已经成为光伏领域的重要课题。太阳能电池的本征吸收层很薄,甚至小于光的波长,使得进入太阳能电池光子的光程很短,成为除材料以外,制约太阳能电池进一步提高光伏效率的重要因素。为了提高光子在太阳能电池本征吸收层中的吸收率,需要研究在降低电池表面反射的同时,延长光子在本征吸收层的光程,实现高效陷光。 本项目基于微纳光学理论和微纳结构加工技术,提出了“低表面反射+低光能逃逸+高效延长光程”的高效超陷光机制,设计了具有“低表面反射率+低光能逃逸+高效延长光程”的高效超陷光结构。利用宽带陷光技术研发的宽带陷光光伏玻璃,在380nm~1200nm波长范围内,具有高于40%的雾度。宽带陷光光伏玻璃基片应用于硅叠层薄膜太阳能电池, 在380nm~1200nm波长范围内,对于准垂直入射光的反射率小于3%. 在AM1.5测试环境下,太阳能电池光伏效率比较没有陷光结构光伏玻璃的太阳能电池相对提高5%。以上。 基于微纳光学结构的太阳能电池高效陷光技术,在太阳能电池、太阳能电池组件封装中具有广泛的应用前景,对于提高太阳能电池及其组件的光伏效率具有重要意义。
上海交通大学
2021-04-13
一种无机钙钛矿太阳
能
电池
及其制备方法
本发明属于微纳制造技术领域,并公开了一种无机钙钛矿太阳 能电池,包括导电基底、电子收集层、光吸收层、空穴传输层和碳对 电极层,导电基底包括玻璃基片及两块 FTO 导电层,两块 FTO 导电层之间具有分隔槽;电子收集层包括致密 TiO2 层和介孔 TiO2 层,致 密 TiO2 层沉积在玻璃基片的分隔槽处和其中一块 FTO 导电层的上表 面上。
华中科技大学
2021-04-14
环境友好的宽温高稳性薄膜
储
能
电容器的开发与研究
我们已采用磁控溅射沉积方法成功地制备和研究了环境友好的钛酸钡和铋镁锆钛氧的复合薄膜,发现其储能密度和储能效率在-100~200 °C温度区间内都表现出了良好的热稳定性,并且其宽温储能密度明显高于铅基材料在这个温度区间报道的最大值,使其成为替代铅基储能材料的最佳选择。为了降低生产成本,目前我们正在通过研究和调控薄膜的生长工艺来实现在成本低廉的Si、Ni等衬底上制备大面积、高质量、高性能的复合储能薄膜。
西安交通大学
2021-04-11
一种小水电机群组成分布式
储
能
系统的方法
本发明公开了一种小水电机群组成分布式储能系统的方法。该 方法包括:获得一个储能周期 T 中,第 t 个时段所有小水电站的总净 负荷值 PLj(t);根据优化目标、总净负荷值 PLj(t)以及第 i 个小水电站 的计划负荷 pi(t),获得第 i 个小水电站的实际负荷 pfci(t);根据第 i 个 小水电站的实际负荷 pfci(t),对第 i 个小水电站的抽水蓄水装置进行最 优效率控制,令所述第 i 个小水电站按照实际负荷 pfci(t)在最优效率下 运行,所述抽水蓄水装置为水轮机及水泵或者可逆式水
华中科技大学
2021-04-14
一种锂硫
电池
正极
材料
及其制备方法
本发明公开一种锂硫电池正极材料及制备方法,首先分别配置溶质为含碳聚合物以及含碳聚合物与过渡金属盐的静电纺丝溶液,经过静电纺丝、碳化处理得到双层的具有柔性的原位掺杂过渡金属的碳纳米纤维基底材料,再通过升华硫/二硫化碳溶液进行液相载硫,得到负载硫的双层碳纳米纤维基底材料,然后构筑中间两层均为原位掺杂过渡金属且均匀负载硫的碳纳米纤维层的四层碳纳米纤维基底材料,然后升至150℃保温15min,随炉降温,即得锂硫电池正极材料,硫含量为40?60%。
上海理工大学
2021-04-10
一种锂离子
电池
正极
材料
及制备方法
综述了锂离子电池正极材料的工作原理,应具备的结构与性质以及目前最具有吸引力的三种正极材料LiCoO2,LiNiO2,LiMn2O4.通过比较这三种正极材料的制备方法和电化学性能,讨论了这些材料存在的问题和相应的解决方法。
昆明理工大学
2021-04-11
一种锂离子
电池
正极
材料
的制备方法
本发明提供了一种通过对采用固相法、液相法等各种合成方法制备的锂离子电池正极材料例如LiFePO4的前驱体进行变温联合煅烧,达到对合成锂离子电池正极材料结构和形貌的优化设计和控制,从而获得具有高倍率及超高倍率充放电特性的锂离子电池电极材料的制备方法。
浙江大学
2021-04-11
用兰炭末制备锂离子
电池
负极
材料
研究
兰炭也称半焦碳,是由低变质煤在隔绝空气的情况下加热获得的固体产品。在兰炭生产过程中,小于3 mm的兰炭粉末约占总质量的10%,这部分兰炭粉(半焦)是用廉价的末煤干馏而成,成本较块煤降低近20%。因其粒度小,不符合生产工艺要求,只能被当作低级燃料廉价处理或被弃置于河道或地头。这不仅造成大量能源浪费,限制兰炭的经济效益,而且对环境造成严重污染。 利用兰炭末制备新材料是有意义的事情,将其改性制备成高性能的锂电池,不仅可以大幅提升兰炭的经济效益,减少废料堆环境的污染,也将降低锂离子电池的成本。目前研究表明:对兰炭末进行高温石墨化处理,性能可以达到锂离子电池负极的性能指标。放电容量达到了300mAh/g以上。循环寿命,循环300次后,容量没有衰减。该项目对环境保护和资源利用有较大的益处,与现有锂电池负极材料相比,有一定的成本优势。
西安交通大学
2021-04-11
发表期刊-锂离子
电池
三元正极
材料
领域
上海科技大学物质学院谢琎课题组与上海交通大学化工系李林森课题组合作,在锂离子电池三元正极材料领域取得重要进展。近日,该研究成果以 Simultaneous enhancement of interfacial stability and kinetics of single-crystal LiNi0.6Mn0.2Co0.2O2 through optimized surface coating and doping 为题,在美国化学会旗下学术期刊 Nano Letters 上在线发表。该工作提出的单晶颗粒表面从 ALD 涂层到表面掺杂的转化方法为稳定高压锂离子电池正极材料提供一种新的思路,也为原子层沉积在设计储能材料界面中的应用开辟了新的机遇。 物质学院谢琎课题组 2018 级硕博连读研究生包文达和上海交通大学 2017级博士研究生钱冠男为该论文共同第一作者,谢琎教授和上海交通大学李林森特别研究员为论文共同通讯作者,该工作得到了上科大刘志课题组博士后蔡军、助理研究员余毅以及上海交通大学博士研究生孟德超、马紫峰教授的帮助和支持,同时感谢上科大物质学院电镜中心、分析测试平台的大力支持。上海科技大学为第一完成单位。该项工作受到了上海市自然科学基金、上科大启动经费和国家自然科学基金等的支持。
上海科技大学
2021-04-13
首页
上一页
1
2
...
20
21
22
...
283
284
下一页
尾页
热搜推荐:
1
云上高博会企业会员招募
2
64届高博会于2026年5月在南昌举办
3
征集科技创新成果