高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
高稳定性辣椒红色素微胶囊制备技术
本技术提供了一种提高辣椒红色素稳定性的微胶囊化方法。本 技术以非离子型表面活性剂-大豆分离蛋白混合液为乳化剂来制备 O/W 型辣椒红 色素乳状液,再缓慢加入壳聚糖溶液,通过调节 pH 值,促使壳聚糖与大豆分离 蛋白通过静电相互作用,形成的复凝聚相沉降在辣椒红色素乳滴周围而得到微 胶囊。这种方法制得的 O/W 型辣椒红色素乳状液分散性更好,最终形成的微胶 囊的最内层是辣椒红色素乳滴,乳滴周围被非离子型表面活性剂-大豆分离蛋白青岛农业大学科技成果介绍 2017 -43- 混合液外壳均匀包裹着,最外层牢固且均匀地结合着壳聚糖;而直接将大豆分 离蛋白、壳聚糖和辣椒红色素三者共混后再调节 pH 制备的辣椒红色素微胶囊, 在辣椒红色素乳滴周围仅有一层大豆分离蛋白和壳聚糖通过静电相互作用形成 的外壳。由此,本技术克服了三者共混时辣椒红色素乳状液容易破乳、微胶囊 的壁材厚度较小的问题,确保壳聚糖能够较好的吸附在大豆分离蛋白表面形成 致密的微胶囊膜。 技术特点:本技术制备的辣椒红色素微胶囊外观形态好,不易吸潮,食用 安全;高温、光照和一定相对湿度条件下储存时稳定性明显提高;辣椒红色素 乳化效果好,分散性和包埋效率高。 应用领域及前景:本技术解决了脂溶性辣椒红色素难以混合均匀的问题, 拓展了辣椒红色素的应用领域。
青岛农业大学 2021-04-11
飞秒激光脉冲制备硅基微纳结构光伏材料
太阳能作为一种洁净和相对易于获取的能源在未来的动力产品中将占有越来越大的比份。如何发展高光电能量转换效率、高可靠性和低成本的太阳能电池是目前太阳能利用领域所面临的关键问题。相对于第一代和第二代太阳能电池(转换效率<<50%),各国科学家纷纷研究不同的应用于第三代太阳能电池的新材料和新结构,目标是使光电转换效率大于5 0%。近年来,一种具有微、纳米量级特殊结构的光伏材料成为太阳能电池的研究热点。利用飞秒脉冲激光在极短的持续时间内激发出极大的峰值能量,其在硅片的相互作用过程中具有很强的非线性效应,聚焦烧蚀硅表面很小的一块面积,形成规则排列的微纳米结构。这种微纳米结构由于表面积增大,对入射光波有很大的吸收,且对光的敏感性提高了数百倍,这些性质对我们提高光电转换效率具有很大的指导意义。这种材料与本底未处理材料的性质相比,材料带隙减小,对光的敏感性提高了数百倍,这使得其对波长为250—2500 nm的入射光波有大于90%的吸收;另外,黑硅比传统材质的硅的比重低。这些奇特的光电和物理性质能进一步提高太阳能电池的光电转换效率。根据光吸收效率,激子光量子效率,化学电势效率以及填充因子计算总的光电转换效率,普通硅基太阳能电池光电转换效率只有1 5%,而基于微纳结构光伏材料的太阳能电池转换效率可望达到50%-60%。 针对国民经济可持续发展在太阳能光伏技术方面的重大需求,发展利用超短脉冲激光制备具有优异光电转化效率的微纳结构光伏材料的新方法,以及通过探测光伏材料中非平衡载流子的能带结构及微分负电导等特性,探知光伏材料的光电转换效率,从而筛选出转换效率较高的微纳结构光伏材料,最终在发展新型、高效太阳能电池的新原理和新技术方面取得创新性突破,为我国研发具有自主知识产权的高效第三代光伏电池打下坚实基础。
上海理工大学 2021-04-11
中国科大制备出发光具有方向性的量子点
中国科学技术大学中科院微观磁共振重点实验室杜江峰院士、樊逢佳教授等人与多伦多大学OleksandrVoznyy教授合作,在胶体量子点发光材料领域取得重要进展。
中国科学技术大学 2022-03-15
利用中低品位磷钾矿制备富磷钾生物有机肥
1 成果简介化学磷钾肥的生产和施用中存在众多问题:( 1)水溶性磷钾肥易随下雨和灌溉用水流失,磷肥利用率不到 20%;( 2) 大量使用化学磷钾肥造成土壤酸化, 流失的磷元素又形成湖泊富磷化污染;( 3)酸法生产磷肥耗酸量大且产生大量磷石膏废物;( 4)我国磷矿以中低品位为主,选矿难度大成本高;( 5) 有机农业的兴起,对有机肥中磷钾元素的补充也提出来如何替代化肥的现实需求。 “ 有机农业发展的肥料瓶颈、磷肥生产环节环境负担大、优质磷矿资源短缺、水溶性磷肥流失污染水系” 等一系列问题的形成是基于传统磷化肥的生产和施用体系。为此,我们开发了利用中低品位磷矿微晶化活化与在解磷解钾菌的促进下的有机肥发酵组合工艺,研制成新型长效富磷钾有机生物肥料和成套装备。该技术 2009 年通过教育部组织的专家技术鉴定,获得科技部农业科技成果转化项目的支持,现在山东完成规模化生产;建立了曹县牛粪复合发酵土壤有机化转换示范区、黄河三角洲生态农业示范区以及环太湖流域控磷环保示范区。2 应用说明本产品是采用经过活化的磷钾矿为主要原料,在特效菌种作用下与有机质共同发酵处理;其特点是长效缓释、非酸化、非水溶性,后效性显著,一季使用多季有效;该肥料可优化土壤矿物组成,避免化肥对农产品质量及土壤酸化等不良影响,达到增产、改善品质、绿色生态的效果。 该产品的原材料来源广泛,除中低品位磷钾矿外,发酵还可以利用各地畜禽粪便、食用菌残渣、泥碳、褐煤、风化煤、糖渣、部分发酵法制作食品类的废弃物、沼气残留物、禽畜粪便及屠宰废弃物及生活垃圾等,能减少环境污染、净化环境、也起到生态循环作用。经过两年多在小麦、蔬菜、冬枣等农林作物上的使用观察,其结果表明:此类有机肥的肥效等同于等量过磷酸钙,但比过磷酸钙具有跨季后效、生态环保、满足绿色有机农产品的生产。  图1 富磷有机生物肥生产工艺流程3 效益分析基本原料和加工成本约 600 元/吨(各地成本有所不同),市场销售价格在 1500 元/吨。形成 3 万吨生产能力的设备投入在 500 万元左右。4 合作方式技术服务。5 所属行业领域先进制造。
清华大学 2021-04-13
金松双黄酮在制备防治糖尿病药物中的应用
【发 明 人】陈建伟;李祥;薛平;汤彬;姚晓【技术领域】本发明涉及一种金松双黄酮,具体涉及金松双黄酮在制备防治糖尿病药物中的应用。【摘要】本发明公开了金松双黄酮在制备防治糖尿病药物中的应用。经实验研究表明,金松双黄酮具有很好的治疗糖尿病的作用,对糖尿病及其糖尿病合并心脏病和糖尿病合并高脂血症等相关性疾病均具有非常好的治疗效果,且实验过程中,未表现出副作用等不良反应,有望开发成为新一代安全有效,用于防治糖尿病及其并发症的药物。
南京中医药大学 2021-04-13
以纳米碳酸钙为基体的抗菌材料制备技术
一、 项目简介通过近几年的研究,本课题组在纳米碳酸钙的晶形、粒径、分散性、制备工艺、生产设备选择等研究上取得了一定成果,在抗菌剂研究方面成功地解决了银系抗菌剂的变黑和稳定性问题。在实验室进行了制备纳米抗菌碳酸钙放大实验,取得了令人满意的结果,并就前期研究成果申请了技术发明专利。二、 项目技术成熟程度本项目为专利技术,处在中试阶段。实验结果重复性好,产品质量稳定。产品抗菌性能及白度随着在自来水中浸泡时间的变化结果见表1。由表中数据可以看出:产品的抗菌效果及白度是很稳定的。三、 技术指标  该项目已经取得了技术发明专利:以纳米碳酸钙为基体的抗菌材料的制备方法,专利号为ZL200910067771.1。四、 市场前景技术特点:1.工艺简单。不需要多步制备和高温烧结,整个制备都在液相进行,保证了抗菌成分在碳酸钙表面分布均匀。2.白度高。该产品在其应用的领域,其白度都能保证在90以上。3.抗菌效果好。纳米效应和光催化效应共同作用使得产品具有优良的抗菌性。4.成本低。碳酸钙较其他载体成本更低。5.应用方便。碳酸钙既是填料,又具有抗菌性能。市场前景:随着人们生活水平的提高和保健意识的增强,人们对工作和家庭环境卫生日益重视,尽量减少周围环境滋生的细菌对人体的侵害,然而环境的污染、病原微生物和病毒已经给人类带来了巨大的威胁,因此世界各国开始积极研制抗菌剂及抗菌制品。现在的抗菌剂可分为有机、天然和无机三大系列。研究表明,有机抗菌剂耐高温性差,抗菌长效性不佳,且对人体有害,容易产生抗药性;天然抗菌剂具有抗菌效率高和安全无毒等优点,但耐热性差,药效持续时间短,且资源有限,技术不成熟;无机抗菌剂由于容易工业化,且耐温性能和抗菌谱广、性能好而备受青睐。无机抗菌剂的主要成分是负载型银、锌或铜等,最常用的是Ag系抗菌剂。目前多以沸石、磷酸盐、硅胶、玻璃等无机材料为载体。但这类抗菌剂存在的主要缺点是:(1)抗菌剂的粒径一般在0.5-10微米,能够与病菌或细菌接触的表面积较小;(2)制备工艺复杂,而且由于采用碾磨法制备故抗菌有效成分的金属离子在载体表面的分布不均匀;(3)制备成本高且产品的白度低。(4)应用在塑料、造纸、涂料等产品中可能影响产品性能。本技术制备的抗菌纳米碳酸钙,粒度分布均匀、白度高、成本低。在有光或无光条件下均能发挥抗菌作用。该抗菌碳酸钙在橡胶、塑料、造纸、涂料、油墨、医药等行业具有广阔的应用前景。 该抗菌剂的基体纳米碳酸钙本身就是橡胶、塑料、造纸、涂料、油墨、医药等行业中广泛应用的添加剂,本技术给它赋予了抗菌功能,使产品的附加值大幅度提高。五、 规模与投资需求 生产规模根据厂家要求而定。投资受市场影响价格会有波动。六、 生产设备1. 新建厂需要石灰窑、化灰机、带搅拌反应釜、压滤机等设备;2. 在原有纳米碳酸钙生产流程基础上只需增加1-2个反应釜、2个抗菌剂配料釜即可;3. 若为普通轻钙生产线,需增加制冷系统,再增加1-2个反应釜、2个抗菌剂配料釜。七、 效益分析   每1万吨产品年利润500~1000万元人民币。受市场影响价格会有波动。八、 合作方式   专利转让、技术转让等方式,面议。九、 项目具体联系人及联系方式(包括电子邮箱)   胡琳娜:女,博士,教授。联系方式:手机号13622124805;qq号745852370;电子信箱hln@hebut.edu.cn
河北工业大学 2021-04-13
铁磁性非晶合金结构与功能材料制备及应用
研制出了多个具有自主知识产权的铁磁性非晶、纳米晶软磁合金材料,具有优异的力学性能、软磁性能、耐蚀性能及对染料废水高效降解性能,具体研究成果包括:(1)高饱和磁感低损耗纳米晶软磁合金:研制了FeSiBPCu系列纳米晶软磁合金,饱和磁感应强度达1.8T以上,1.5T/50Hz条件下的铁损仅为0.29W/kg,是高级取向硅钢铁损的1/2,技术性能远优于日本主要生产和大力推广的FINEMET纳米晶合金系列产品,在高效节能电机、无线充电系统、新能源汽车等技术领域具有广阔市场前景;(2)铁磁性非晶合金构件涂层:制备了厚度达9mm的非晶合金构件涂层,非晶度90%以上,孔隙率低于1%,平均硬度达976HV,内聚强度为237MPa;利用激光熔覆技术进一步改善其力学性能,断裂强度达1800Mpa,具有优异的耐蚀性能和耐摩擦磨损性能,适用于各种功能构件的在线修复;(3)铁基非晶合金化学性能研究:研究了FePC(Cu)、FeSiBPCu、FeBC、FeCrNbYB等非晶/纳米晶合金在对染料废水的高效降解,发现合金表面的“自更新”行为可有效提高合金的重复利用性,同时良好的热磁调谐性使合金便于降解后的自动回收,对于实现高效、低成本处理印染废水,解决水污染问题具有重要的应用价值。
东南大学 2021-04-13
智能功率驱动芯片设计及制备的关键技术与应用
一、创新点: 1.创新1-高低压兼容工艺技术:世界首个P-sub/P-Epi高低压兼容浮置沉底工艺平台 2.创新2-抗瞬时电冲击电路技术:国际最高品质因子600V等级浮栅控制芯片 3.创新3-低损耗功率器件技术:超低开关损耗阶梯栅氧600V超结功率器件 4.创新4-高功率密度互联技术:国内首款微型智能功率驱动芯片及600V单片智能功率驱动芯片。 二、产出情况: 被Amazon、Philips、Samsung、美的等100多家国内外公司采用,项目新增销售27.2亿元,新增利润4.9亿元,新增创汇3115.5万美元,解决了我国智能功率驱动芯片的“卡脖子”问题。 1.智能生活家电领域累计销售超16亿颗,市场占有率全国第一(超过40%) 2.首次实现国产智能功率驱动芯片应用于高铁空调控制器 3.唯一一款应用于智能电表的国产功率芯片,解决了我国智能电表系统的战略安全问题 4.在新能源交通工具领域出货量超30亿颗 成功应用于亚马逊无人仓储机器人,首批供货超过1万套。
东南大学 2021-04-13
超高强度钢丝制备技术研究及产业化
成果介绍从珠光体钢丝的形变、相变和强化机制着手,揭示了超大形变珠光体的形变机制、织构遗传现象及影响因素、超大形变渗碳体微结构的调控机制,实现了超高强度钢丝的批量化生产。技术创新点及参数超高强度钢丝制备三大核心技术:1、超大形变珠光体钢丝的织构遗传控制技术2、超大形变珠光体钢丝精细回火处理技术3、超高强度钢丝的低损伤拉拔控制技术。市场前景1、正在合作研制新一代承载探测电缆(2400~2500MPa级镀锌铝钢丝),油井的最大探测深度将超过10000m,国际领先。2、未来在高端建造行业、精密加工行业可以填补国内巨大的技术空白,引领行业发展,未来成长可期。
东南大学 2021-04-13
消症饮在制备治疗乳腺增生病药物中的应用
【发 明 人】高月平【技术领域】本发明涉及消症饮在制药中的新用途,具体地说是涉及消症饮在制备治疗乳腺增生病药物中的应用。【摘要】一种消症饮在制药中的新用途,即在制备治疗乳腺增生疾病药物中的应用,消症饮是由鹿角片、白芥子、桃仁、熟地、淫羊藿、生薏苡仁、三棱、醋柴胡、大血藤、延胡索、按一定重量配比制成,该药物可制成汤剂、胶囊剂、片剂、冲剂、口服液、糖浆或合剂等,经临床试验结果表明150例乳腺增生病患者,分为治疗组100例和对照组50例,对照组用乳癖消,治疗组用消症饮汤剂,试验结果治疗组和对照组的总有效率为100%和74%;其中100例治疗组中痊愈64例(64%),显效21例(21%),有效15例(15%),无效0例;总有效率100%,而50例对照组中痊愈19例(38%),有效8例(16%),无效13例(26%),总有效率74%。
南京中医药大学 2021-04-13
首页 上一页 1 2
  • ...
  • 426 427 428
  • ...
  • 865 866 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1