高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
多响应宏观软体机器人的制备与功能化设计
单晶二氧化钒纳米线在68摄氏度时发生金属-绝缘相变,可产生约为~1%的轴向弹性应变,将其与高弹性的材料复合为双层结构即可构成高性能的弯曲式微型驱动器。然而如何将二氧化钒纳米线的优异驱动性能应用于宏观器件一直是一个难题。课题组2018届本科毕业生陈鹏程(现在华盛顿大学攻读博士学位)与2016届本科毕业生石润(现为2017级南科大-港科大联培博士)共同
南方科技大学 2021-04-14
南水北调工程大型高效泵装置优化水力设计理论与应用
该成果于 2012 年获江苏省科技进步一等奖。本研究成果已在国家南水北调东线工程 48座大型泵站得到应用,经第三方机构检测,南水北调东线一期工程 15 座新建泵站设计扬程工况泵装置效率的平均值达到 77.4%,较采用传统设计理论设计的泵装置效率的整体水平提高了 7 个百分点,彻底改变了 21 世纪初我国大型泵站的泵装置效率在 70%上下徘徊不前的局面。南水北调宝应站现场运行测试表明,泵机组运行稳定,泵装置效率达到 82.8%,创我国泵站建设史上的最高记录。
扬州大学 2021-04-14
铸造全流程工艺优化设计与生产管理工业软件
本成果完全自主研发的铸造全流程工艺设计与生产管理工业软件包含“华铸CAE”,“华铸ERP”等系列软件及“1+N”数字化铸造软件平台,能够为铸造企业提供全流程工艺模拟仿真、生产质量管理等数字化技术,降低铸件产品的废品率,提高产品稳定性与品质。 一、项目分类 关键核心技术突破 二、成果简介 本成果完全自主研发的铸造全流程工艺设计与生产管理工业软件包含“华铸CAE”,“华铸ERP”等系列软件及“1+N”数字化铸造软件平台,能够为铸造企业提供全流程工艺模拟仿真、生产质量管理等数字化技术,降低铸件产品的废品率,提高产品稳定性与品质。 “华铸CAE”与德国的MAGMA和法国的ProCAST相比,系统总体性能指标达到国际先进水平,部分功能国际领先,如本成果首创的缩孔缩松定量预测与数值鼠标功能,能定量预测缩孔缩松等缺陷大小与位置等。“华铸ERP”在国内率先实现了由传统批次管理向单件化管理的转变,利用信息系统的智能化技术使信息化系统由传统机械式走向人性化。
华中科技大学 2022-07-27
行业协作机器人及先进控制芯片模组
发挥上海交大自动化系在预测控制多年的积累和优势,开创性地应用非冯诺依曼架构实现高性价比的电机控制诊断模组,全球范围内首度实现控制器和诊断器的一体化,首度高性能AI芯片应用到一体化关节,从基于存算一体电控芯片模组打造协作机械臂及路桥焊接工作站,到实现电机驱动专用芯片流片
上海交通大学 2023-05-09
利用自学习系统实现逼近理论极限的光学手性材料设计
随着纳米光子学的发展,具有超颖性质的人工微结构吸引了众多研究。针对日益增长的研究和设计需求,北京大学物理学院方哲宇及其研究团队实现了一种自洽的框架——BoNet,其结合了贝叶斯优化(Bayesian optimization)和卷积神经网络(convolutional neural network),实现了纳米结构对于超强光学手性的自学习。基于此框架,他们将纳米结构设计表示为图形,并输入卷积神经网络进行电场分布和反射光谱的学习,此过程不需要将纳米结构参数化为向量,因此最大化的保留了其几何信息和边界条件。同时,利用贝叶斯优化以实现对纳米结构远场光学手性的优化,并运用其采样样本反复训练神经网络实现自学习。利用BoNet,他们针对远场反射光谱的圆二色性进行优化并逼近了其理论极限(CD = 1),同时利用神经网络匹配预测的近场电场分布,对获得的强光学手性进行分析解释。 此框架能够被直接推广用于其他光学性质的自学习优化,例如实现反常透射,偏振态调制和相位调制。更进一步的,此方法论能够帮助设计更多的,具有良好光学性质和运用价值的纳米光子学器件,比如消色差超透镜,超灵敏的微传感器以及智能超表面等。此研究同时能够启发更多数据驱动的研究,通过利用人工神经网络和其他机器学习的方法,实现对传统科学研究的新探索,在制药,引物设计,固体结构分析上启发新突破。 该工作于2019年11月19日在线发表于学术期刊《PHYSICAL REVIEW LETTERS》上,题为“Self-Learning Perfect Optical Chirality via a Deep Neural Network”(DOI: 10.1103/PhysRevLett.123.213902)。北京大学物理学院方哲宇研究员是本文的通讯作者,李瑜,徐优俊,姜美玲为该文的共同第一作者,北京大学定量生物学中心来鲁华教授为合作者,北京大学为唯一通讯作者单位。该工作得到得到了科技部、教育部、国家自然科学基金委、北京大学人工微结构和介观物理国家重点实验室、北京大学纳光电子前沿科学中心、量子物质科学协同创新中心、北京大学高性能校级计算平台、北京大学生命科学中心高性能计算平台等单位的支持。用于近远场计算的神经网络结构表征实现了逼近理论极限的高手性,并利用神经网络对近场分布进行分析
北京大学 2021-04-11
生物质材料提取分离铼技术
研发了几种高性能的提取及分离稀散金属铼的活性体系。以生物质废弃物废纤维素为原材料,胺基修饰制备得到了六种胺基化废纸吸附剂,对 Re(VII) 表现出较高的吸附性能。针对含铼料液中经常伴生钼的问题,研制了以稻壳、秸秆为原材料的吸附剂,经酯化后,得到了两种吸附材料 ORH 、 OCS ,以另一种天然生物质褐藻为原材料,经酯化后,得到了具有活性的交联吸附剂 CAS 。通过对实际料液分离铼的动态模拟实验,验证了这几类吸附剂的实际应用性,对 Re(VII) 的回收率可达 97% 以上,为工业应用奠定了基础。针对传统铼的液相分离体系,研制成功多种用于固相萃取的树脂微球,其分离过程可避免传统液液萃取体系易产生第三相,以及产生大量无机废弃物等弊端,实现了快速、绿色的分离效果。以工业液液分离反应器为蓝本,自行设计建制了一套恒温萃取装置,温度控制范围在 5 ℃ -80 ℃,控温精度可达± 0.05K 。在此装置上测定了 10 余套铼的液液分离过程中的热力学参数,以经典的统计力学结合溶液化学理论,计算得到了液液分离过程的热力学参数,进一步解释了萃取反应过程中的溶液化学理论,为反应器的工业化奠定了基础。
辽宁大学 2021-04-11
用于HPV分型的材料技术
已有样品/n该发明在于提供一种用于HPV分型检测的方法,该方法是采用多重核酸扩增、核酸杂交以及碱性磷酸酶标记的链霉亲和素显色的方法,根据人乳头瘤病毒(HPV)的L1基因靶序列设计高度特异的biotin标记的引物和探针,取病变组织和局部组织粘液、分泌物,通过PCR反应,并在核酸芯片上进行反向斑点杂交,及将合成的短核苷酸片段固定在核酸芯片上,用标记的目的片段与之杂交。随后利用碱性磷酸酶标记的链霉亲和素(AP-SA),它的链霉亲合素部分可以特异性结合生物素标记的探针,另外碱性磷酸酶部分可以充当碱性磷酸酶的
武汉大学 2021-01-12
银纳米线导电材料和技术
本团队经过近两年的科研努力,成功研发了高品质银纳米线材料。该方法具有简单、快速、高产率、低成本等突出优点,所制备银纳米线具有超细的优点(30nm),基于该银纳米线制备的柔性膜具有高导电性,高透明性、低雾度等特点,在银纳米线技术领域具备国际竞争力。此外,相比于其它已报道路线的合成方法,该方法具有合成步骤简单、反应条件温和、提纯方法简易、无污染、产率高等突出优势,为银纳米线进入市场提供了必要的技术支撑。拥有的自主知识产权情况:刘举庆,黄维,刘洋,一种快速高效的超细银纳米线制备方法.
南京工业大学 2021-04-13
高能球磨-材料研发新技术
高能球磨是一个高能量干式球磨过程。简单地说,它是在高能量磨球的撞击研磨作用下,使研磨的粉末之间发生反复的冷焊和断裂,形成细化的复合颗粒,发生固态反应形成新材料的过程。和常规的冶炼工艺及一般的快速凝固非平衡工艺相比,高能球磨工艺有以下几大特点: 1、工艺简单,易于工业化生产,产量大(一台大型球磨机日产量可达吨级)。 2、整个过程在室温固态下进行,无需高温熔化,工艺简单灵活。 3、合成制备材料体系广,不受平衡相图的限制。 4、可得到其它技术较难得到的组织结构,如宽成分范围的非晶合金、超饱和固溶体、纳米晶合金及原位生成的超细弥散强化结构。 5、可合成制备常规方法无法得到的合金,特别是不互溶体系合金、熔点差别大的合金、比重相差大的合金及蒸汽压相差较大的合金等难熔合金的制备。
西安交通大学 2021-04-11
聚丙烯发泡材料生产技术
中试阶段/n本技术研发出的聚丙烯(PP)性能优异:刚性优于聚乙烯(PE),PP弯曲模量大约为1.52Gpa,PE仅为207Mpa,耐化学性与PE相似;玻璃化温度低于室温,抗冲击性能优于PS,而且是一种环境友好的材料;能耐130℃的高温;受多次连续撞击和挠曲变形后会很快恢复原始形状;质量轻且能够反复使用;易回收再利用,易分解,制品不含对人体有毒有害的成分,燃烧不产生有毒物质。目前国内尚未有与聚丙烯泡沫相关的、可工业化的核心技术。经济效益(按年产5000吨计):总生产成本4500万元,预计总收入可达98
湖北工业大学 2021-01-12
首页 上一页 1 2
  • ...
  • 36 37 38
  • ...
  • 999 1000 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1