高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
绿色节能储能产品
高热阻/防火/防水 膨胀珍珠岩保温板 防火等级:A 
中国地质大学(北京) 2021-05-10
新型飞轮储能装置
本成果涉及的飞轮储能装置基于永磁偏置磁悬浮轴承与双凸极电机集成化技术,永磁偏置磁悬浮轴承能够实现对转子位移的主动控制,且具有较小的能量损耗,适合应用于转子质量重、转速高的飞轮储能系统中。双凸极永磁电机采用永磁体来提供励磁磁场,具有较高的效率和较大的转矩,且转子结构简单,适合高速运行。鉴于两者都是采用永磁体来提供静态磁场这一共同特点,本项目提出了利用同一永磁体同时为磁悬浮轴承提供偏置磁场,为电机提供励磁磁场的思路。此外,鉴于混合励磁双凸极电机能发挥永磁高效与电励磁方便调节磁场的优势,使电机在电动运行
南京工业大学 2021-01-12
光伏充电系统及用于光伏充电系统的充电控制方法
1. 痛点问题 随着能源危机和节能减排的驱使,大力发展电动汽车成为缓解能源危机和环境污染的有效途径,汽车燃油是石油消耗的主体。汽车尾气占全世界总二氧化碳排放量的10%至15%。电动汽车可以减小二氧化碳的排放量,改善大气环境。以光伏电池作为新能源输入的电动汽车充放电站也将具有更大的优势。推动光伏供电的电动汽车充放电站的建设,不仅发展了电动汽车行业,也推动了光伏产业及新能源的发展,同时对于节能减排,改善环境具有双重推动作用。 现有的光伏电动汽车充电站仍以交流母线或直流母线进行光伏电池、电动汽车蓄电池和电网之间的能量变换。现有的能量变换需要通过多级电力电子变换器实现,即需要多级直流-直流变换器,直流交流变换器等,这使得能量变换的效率很低。多级电力电子变换的现有方案效率低,成本高,无法对产业瓶颈形成有效突破。 2. 解决方案 本项目提出了一种高效的新型光伏充电系统,和用于此系统的充电控制方法。 新型光伏充电系统包括:一个或多个高频逆变器,与一个或多个光伏电池组件一一对应连接,以及多端口变换器。高频交流逆变器之间通过高频交流母线连接。多端口变换器包括分别与高频交流母线和直流母线连接的两个端口以及与蓄电池连接的一个端口。多端口变换器用于实现高频交流母线、直流母线与蓄电池之间的能量变换。 用于光伏充电系统的充电控制方法包括:对于一个或多个光伏电池组件中的每一个,采集该光伏电池组件的输出电流和输出电压,对该光伏电池组件进行最大功率跟踪,并输出电压给定值。将电压给定值与该光伏电池组件的输出电压进行比较,并输出光伏电池比较结果;根据比较结果控制与该光伏电池组件相对应的高频逆变器中的开关管的驱动信号相对于多端口变换器中开关管的驱动信号的移相角;将多端口变换器输入蓄电池的输入电流与蓄电池的充电电流曲线进行比较,并输出蓄电池的比较结果,根据此结果利用脉宽调制方式控制多端口变换器中的开关管驱动信号。 合作需求 与新能源乘用车/商用车整车厂、房地产企业,充电运营商等企业合作,开展知识成果落地和工程化的工作。
清华大学 2022-02-23
光伏逆变器关键技术
研制了 5kW 至 500kW 不同功率等级的单相、三相光伏并网逆变器,掌握了主电路、控制系统、系统集成等关键技术。
北京交通大学 2021-02-01
光伏逆变器关键技术
研制了5kW至500kW不同功率等级的单相、三相光伏并网逆变器,掌握了主电路、控制系统、系统集成等关键技术。 技术特点:    具有效率高、输出电流谐波含量低、输入电压范围宽等特点,具有孤岛检测和低电压穿越功能。  主要技术指标: 1500kW光伏并网逆变器参数说明: 输入参数:推荐最大太阳电池阵列功率550kWp 直流电压范围(MPPT)450~820V 允许最大直流电压880V 最大阵列电流2 x 611A MPP跟踪快速、精确MPP跟踪 输出参数:额定交流输出功率500kW 运行电网电压270VAC±10%额定交流电流1069A供电系统TT、TN-C、TN-S运行中的电网频率50Hz±0.5Hz电网电流的谐波畸变<2% 功率因数(额定功率下)1过载能力120%/1min短路保护150%/(<0.1s) 效率:最大效率      98.8%欧洲效率98.6% 应用范围: 家用、建筑用中小型太阳能发电系统;大规模光伏电站。
北京交通大学 2021-04-11
半透明有机光伏电池
半透明有机光伏电池具有柔性、质轻、无毒、颜色与透明度可调、 可采用大面积印刷制备、在全方位入射角且弱光环境下仍保持高 效率等特性,在便携式可穿戴电子器件、可充电军用帐篷、汽车及建筑玻璃等领域具有巨大的应用潜力。华南理工大学发光材料 与器件国家重点实验室自主研发了基于酰亚胺功能化苯并三氮唑、 萘二并噻二唑单元的聚合物半导体材料体系,在实验室小面积有机光伏器件的能量转换效率达到18%,在世界范围内率先实现了验证效率超过12%的 1 平方厘米面积的聚合物太阳电池。大面积模组器件效率也超过了 12%,多次刷新国际权威第三方检测机构认证的同类器件的最高效率,达到国际领先水平。 
华南理工大学 2023-05-08
极端天气光伏出力预报
在双碳政策的背景下,近年来光伏装机量不断攀升,但太阳能资源自身波动性及随机性特点使其发电过程中的骤升或骤降现象对电力系统的合理调控和有效调度带来困难,容易造成弃光现象的发生。准确预测光伏发电功率可以使电力调度部门及时调整调度计划,提高电网运行的经济性和稳定性,促进新能源消纳。预测的结果精度与其时间尺度具有强相关性,因而对于光伏场站而言,分钟级的出力预报信息具有较高的参考价值。 光伏发电功率预测是基于光伏电力不稳定性特征和电力系统实时平衡要求矛盾而产生的一种需求。超短期内光伏输出功率爬坡主要由云团对太阳辐射无规律的遮挡造成,该遮挡过程难以量化,对超短期内光伏输出爬坡预测造成了很大的困难。 为量化云团对太阳辐射的遮挡过程,本课题利用天空成像仪获取云团参数(云高,云速,云团形状),云高方面:基于双目视觉原理,采用两台全天空成像仪捕捉天空图片,根据双目摄像机视差及其几何关系反向推算得出云团高度;云速方面,结合单摄像机拍摄的连续天空图像计算得到云团的运动速度矢量;云团形状方面:利用图像畸变矫正技术,结合云高信息,可获取云团形状信息。根据上述云团物理信息,默认云团运动状态短期内保持恒定,对未来15分钟内云团运动轨迹进行刻画,再通过天文算法计算得到的太阳方位,推算得出当前云团状况下未来15分钟地面阴影的变化情况,以此判断光伏板的遮挡情况。后根据云团厚度情况判断其对太阳光的遮挡率大小,以其为依据对理论计算出的太阳辐照数据进行削减修正,由此完成未来15分钟内的分钟级超短期光伏功率变化预测。 本方法相比于基于卫星云图的数值天气预报,观测设备仅需两台全天空成像仪,安装更为灵活且兼具更优的性价比;设备还具备更高的时空分辨率,因而可以实现云团的精细观测,从而可完成更高精度的预测任务,预测结果具备更高的准确性。 创新点 1、开发出一种基于双目视觉原理及图像处理技术的云团多尺度信息获取方法。 2、开发出一种基于云团透射率和地面阴影轨迹预测的光伏场站出力分钟级预测方法。 市场前景 随着全球加快应对气候变化,光伏市场需求持续增加,数据显示,我国光伏行业在2021年继续高歌猛进,光伏新增装机创历史新高,达到54.88GW。未来十几年,中国太阳能装机容量的复合增长率将高达25%以上。根据光伏发电行业国家政策规划,未来将着力推进光伏基地化开发、分布式化开发以及综合水风光的综合基地开发。 无论是以沙漠、戈壁、荒漠地区为重点的大型风电光伏基地开发,还是整县屋顶分布式光伏试点的组织开展,或是综合多种发电手段的新能源大规模发展,都需要准确的光伏发电功率预测为电网调度提供参考与保护。预测精度直接影响着电力系统的安全稳定运行,更会影响所有市场参与者的经济收益。据统计,2019年,我国发电功率预测市场的规模为6.34亿元,预计2019年至2024年市场年均复合增速为16.2%,预计2024年光伏发电功率预测市场规模将增加至6.51亿元。从中可以看出,光伏出力预测具备广阔的市场前景。 本成果可实现雾霾、多云等极端天气下的分钟级光伏出力预报,满足对电网调度及运营管理的需求同时兼具精度与成本优势。未来,随着新能源信息化应用环节的增加以及应用对象的转变,类似光伏功率预测等信息化服务将成为主要需求,光伏出力预测技术的应用规模将持续扩大,渗透率也将继续加深。 应用案例 本成果已应用于中国长江三峡集团有限公司联合华北电力大学和北京四方继保自动化股份有限公司研发的面向大规模并网友好型风光储场站群智慧运维系统。该系统依托于三峡集团乌兰察布新一代电网友好绿色电站示范项目(项目总装机:风电170万千瓦、光伏发电30万千瓦、配套建设55万千瓦储能系统),在电站现场部署了两台天空成像仪,并配备了集实时3d天空云团、电站精细模型、气象站数据、电站实时发电功率、超短期功率预测等于一体的数字孪生3d可视化系统,极大提高了电站智慧运维的便捷性。
华北电力大学 2023-08-08
基于深度学习的光伏并网系统电能质量预测及调控策略研究
本成果围绕光伏并网系统电能质量展开。基于深度学习算法,研究谐波等电能质量指标变化规律,运用特征提取技术处理时序数据,实现电能质量预测。研发基于态势感知的电能质量调控装置,总谐波补偿率不小于 90%,补偿次数 2 - 50 次。成果形式包括研究报告、调控装置示范应用,申请发明专利 3 项,发表论文 3 篇。应用场景涵盖光伏电站、配电网等,可提升电网可靠性与经济性,减少设备损耗、优化调控策略、降低弃光率,为新能源消纳提供支撑。
沈阳农业大学 2025-05-21
水-气共容储/释能的高效压缩空气储能系统
传统的抽水蓄能存在需要特殊的地质条件、推广应用受到限制、需要充沛水源、不适合干旱缺水地区、储能密度较低、对所在区域的生态环境有影响等缺点;传统的CAES(压缩空气储能系统电站)存在需要消耗大量的化石类燃料,系统经济型不好、储能时压缩空气过程中存在热交换、释能时外热源加热、CAES的能量转化效率与其他储能系统相比有些低等特点。 本系统提出无水坝抽水蓄能模型,兼收压缩空气储能技术和抽水蓄能技术的优点,摒弃二者缺点,实现热能和压力能的梯级利用。
西安交通大学 2021-04-11
变储能建筑材料
相变储能建筑材料是一种新型建筑节能功能材料,利用相变储能材料可以使传统能 源和可再生能源在时间和地点上进行流转,自动优化能源供应和需求之间的匹配,属于 智能能源概念,在建筑中应用这种材料可以显著提高建筑物的能源利用效率。其应用方 式主要有两种。 一为通过相变储能建筑材料提高建筑物对太阳能等可再生能源的利用率,降低建筑 物对传统能源的消耗。冬季,太阳能热丰富的时间为晴天和白天,而我们对太阳能热需 求的时间是晚上和阴天,二者之间存在明显的时间不匹配性。利用相变储能建筑材料蓄 存白天和晴好天气时的太阳能,在夜间或阴天将蓄存的太阳热释放出来,使得建筑物利 用太阳能的时间从白天和晴天延长到夜间和阴天,提高建筑物利用太阳能的量。 第二种方式为利用相变储能建筑材料开发电力峰谷差“绿色能源”。在盛夏或严寒时 节,空调或其它取暖设备往往集中使用,造成电力紧张,供不应求,而在其它时段又出 现电力过剩的现象,出现所谓的电力峰谷现象。为消除峰谷现象,电力公司将峰时电价 定为谷时电价的数倍,以鼓励电力用户多使用谷时电。在电力需求的波谷时段,可采用 相变储能复合材料蓄存由空调或制热设备产生的冷量和热量,用于电力波峰时段,降低 空调等设备在波峰时段的用电强度,可从用户侧的角度减小电力峰谷差,实现节电、节 能和节约资源的效果。 此外,相变储能建筑材料还可提高建筑物的热稳定性和热惰性,减缓建筑物室内的 温度波动,在提高室内热舒适度的同时,降低空调制冷或加热设施的启、停频率和运行 时间,并达到降低建筑能耗的目的。
同济大学 2021-04-11
首页 上一页 1 2 3 4 5 6
  • ...
  • 109 110 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1