基于超图模型的RGBD图像显著性检测方法
本发明公开了一种基于超图模型的RGBD图像显著性检测方法,该方法包括:对待检测彩色图像和深度图像进行超像素分割,对深度图像的每一个超像素区域进行邻域深度对比图的计算,依据邻域深度对比值构建深度背景超边;提取位于图像边界的超像素区域构建边界背景超边;计算两个超边的权重,并根据超图学习算法进行超边展开,构建诱导图;基于诱导图的空间邻接关系和边权重,利用边界连通性先验计算边界背景显著图;采用基于元胞自动机的显著度更新算法和结合深度先验的融合算法得到最终的显著性检测图。本发明弥补了传统2D边界背景先验中的不足,利用深度信息和超图模型进行改进,与以往结合彩色和深度信息的图像显著性检测方法相比取得了更好的效果。
浙江大学
2021-01-12