高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
开放式内科学多媒体教学系统XM-NK
XM-NK开放式内科学多媒体辅助教学系统   功能特点: ■ XM-NK开放式内科学多媒体辅助教学系统为医学院校学生提供了一种能够自主学习、加强感官认识、强化护理学相关知识、易于操作的全方面的学习条件,丰富医学院校护理教学内容,弥补书面教学过于抽象的不足,方便学生自主学习。 ■ 系统具有开放性、交互性,能够让学生课后随时地进行自主学习,可对学员24小时开放使用,系统操作简单、界面漂亮,具有动态效果,能够从视觉上、听觉上吸引学生注意力,避免了枯燥无味的介绍,弥补课堂不足。 ■ 内容丰富,素材量大,容量超过20G,以视频、动画、图片为主,模拟试题50套以上,方便学生自测,电脑自动快速阅卷评分。 ■ 内容包括: · 呼吸系统疾病类 · 循环系统疾病类 · 消化系统疾病类 · 泌尿系统疾病类 · 血液、造血系统疾病类 · 内分泌系统疾病类 · 结缔组织疾病类 · 肿瘤疾病类 · 神经系统疾病类 ■ 配置:19寸触摸一体机,双核处理器,内存2G,硬盘500G。
上海欣曼科教设备有限公司 2021-08-23
航空发动机三维虚拟实验教学系统
适用专业:飞行器制造工程、飞行器环境与生命保障工程、飞行器动力工程、探测制导与控制技术等专业。 航空发动机原理课程是飞行器制造工程、飞行器环境与生命保障工程、飞行器动力工程、探测制导与控制技术等相关专业的一门主干基础课,其理论性和实践性都很强,它的实验教学航空是发动机原理课程教学中的一个重要实践环节。目前,现实中的航空发动机原理实验存在以下局限性:  1、工作原理难以理解。由于发动机内部结构看不见,学生对航空发动机整体结构及航空发动机的工作原理理解困难。 2、实验难以实现航空发动机的一些特性实验,一些实验在真实环境中无法开展需要较大的仪器设备,才能满足学生进行实验的需求; 3、实验成本太高,开展航空发动机整机及部件特性实验的建设和使用成本高,难以对大批量学生进行开放教学,部分实验的操作过程也比较繁琐。 4、实验风险大,航空发动机工作时转速高,排气温度高,学生开展该类型实验难度大、危险性高,部分实验设备学生无法透过外壳看到设备运行时内部零件的相互配合情况,如航空发动机组成原理实验。 随着招生规模的逐年扩大,教学改革的不断深入,航空发动机原理实验的教学任务越来越重,仪器设备台套数和实验教师数量相对不足等问题愈加突出。为了以最少的经费投入解决以上问题,并进一步激发学生的学习兴趣、增强实验效果、提高实验教学质量,我们开发了开放式网上涉及航空发动机原理等虚拟实验室软件。实验采用3D建模动画人机交互等技术,研发了航空发动机一系列虚拟仿真实验,解决航空航天类相关课程实验教学的不足。 使用现有器材模型,系统可开展如下6个常用航空发动机虚拟实验的训练: •航空发动机建模虚拟实验 •航空发动机燃烧室虚拟实验 •航空发动机典型试车实验 •航空发动机的服役环境模拟虚拟仿真实验 •民航发动机运行监控及性能分析实验 •航空发动机热力循环分析及故障诊断虚拟仿真实验
北京润尼尔科技股份有限公司 2022-09-09
一种基于光学天线的片上无线光通信系统
本发明公开了一种基于光学天线的片上无线光通信系统,现有关于光学频段天线的发明与研究多是基于诸如透镜、反射镜等传统光学器件,这些设计只适用于较大的光学范围。本发明利用金属光学天线自身的定向辐射特性,采用片上系统集成的方式,将光学天线发射基站、反射单元、光学天线中继单元以及光学天线接收终端构成基于光学天线的片上无线光通信系统。该系统能够大大降低通信网络中器件的串扰与功耗,同时使得系统空间响应大大减小达到亚波长量级,进而提高整个光纤通信网络的传输带宽与响应速度。
浙江大学 2021-04-11
大口径光学加工平台
已有样品/n该项目采用自主设计装置和编写的软件,实现嵌入式控制,能够对超短脉冲的脉冲宽度和相位做出精确的测量:波长范围:400nm-2000nm,脉冲宽度15fs-20000fs,重复频率:同步测量-100MHz。目前国内相应的相应设备均需尽快美国和德国产品,单机价格在15万元左右,且计算程序运行电脑需要另配。该仪器与其他产品在性能相比接近的同时,实现直接的控制与显示。
华中科技大学 2021-01-12
非线性光学超构表面
光学超构材料(Metamaterials)的快速发展为人类提供了在亚波长尺度下调控光的传播的丰富手段。很多新奇的光物理现象,例如负折射、超分辨透镜和隐身斗篷等都可以通过设计功能基元的有效介电常数来实现。在光波段,三维纳米加工的困难和金属结构的光损耗不利于超构材料的广泛应用。自二维超构表面(Metasurface)概念提出以来,超构表面在降低三维超构材料加工难度、提高光学效率方面,特别是控制光的功能基元的几何位相等方面取得了众多突破性进展。近来,超构表面在高效率全息成像、超薄光学波片、高数值孔径的平面透镜等领域已经表现出极高的应用潜力。超构表面的研究进展极大丰富了利用超构功能基元实现对电磁场 (可见光、近红外光,太赫兹、微波等波段) 进行调控的手段,为设计新型光学元件提供了新技术。 当前,超构表面的研究主要集中在线性光学的范畴。但毫无疑问,非线性光学响应例如倍频、三倍频、光致折射率变化等过程,将为光学超构表面的功能基元赋予新的可调控自由度。此综述文章从非线性光学超构表面的材料选择、对称性,非线性手性光学超构表面,非线性光学相位调控,非线性光光束调控,光开关与调制五个方面详细介绍了非线性光学超构表面的最新进展。文章最后对非线性光学超构表面在太赫兹非线性光学、量子信息处理等领域的潜在应用的前景作了展望。
南方科技大学 2021-04-13
一种光学调制模块
本发明公开了一种光学调制模块,可产生 FSK/ASK 正交调制信 号,用于传输信号和标签;包括激光器、双平行调制器、90°相位调 制器、余弦信号发生器、乘法器和两个信号发生器;其中,一个信号 发生器产生曼彻斯特信号,另一个信号发生器产生双极性 NRZ 码;余 弦信号发生器产生两路余弦信号,一路余弦信号受曼彻斯特信号调制 90°相位后生成第一控制信号,另一路余弦信号作为第二控制信号; 双极性 NRZ 码与曼彻斯特信号相乘生成第三控制信号;双平行调制器 在三路控制信号的调制下,对激光器输出的激光进行调制
华中科技大学 2021-04-14
快速响应型液晶光学器件
本发明成果包括一种快速响应的光开关,采用两基板同为周期交替且相邻区域取向方向相互垂直的水平取向液晶盒:液晶盒盒厚为5±2μm,两个相邻取向的宽度之比为1:1;包括上下二片ITO 玻璃基片及涂覆的光敏取向剂,并经过线偏振紫外或蓝光片对ITO 玻璃基片上光敏取向剂进行曝光,赋予两基片预设的取向方向;灌入双频液晶,制成一个可调节的液晶光栅,实现光开关功能,具有
南京大学 2021-04-14
纳米光学腔的机理研究
精准制备原子级平整的纳米光学腔,实现了对亚皮米厚度变化的原位测量,比以往报道的等离激元尺子的亚纳米精度高了三个数量级,创造了新的世界记录,为原子/分子尺度上极其微弱的物理和化学过程的探测提供新的方案。 一、项目分类 重大科学前沿创新 二、技术分析 光学腔在激光器的发明、腔量子电动力学与精密测量等方面发挥了极其重要的作用。减小光学腔的模式体积可以提高光与物质相互作用的强度,极大地拓宽光学腔的应用领域。然而,光学腔的小型化面临光学衍射极限物理规律与现代制造技术精度的双重限制。该成果主要创新性与先进性如下: (一)精准制备原子级平整的纳米光学腔,实现了对亚皮米厚度变化的原位测量,比以往报道的等离激元尺子的亚纳米精度高了三个数量级,创造了新的世界记录,为原子/分子尺度上极其微弱的物理和化学过程的探测提供新的方案; (二)利用纳米光学腔对固态量子体系的物态进行调控,实现室温下纳腔中光与物质的强耦合,推动全固态纳腔量子光学的发展,为小型化集成量子光学器件与芯片的开发提供新的途径; (三)证实纳腔量子光学体系的响应速度是超快的,可达到数十飞秒,比高品质光学微腔体系快几个数量级,是发展超高带宽信息器件的理想平台。
武汉大学 2022-08-15
自由光学曲面加工技术
团队利用单点超精密五轴金刚石车床(Nanotech 350FG)开展相关研究,解 决了高精度大尺寸光学元件的加工问题,提出了刀具补偿技术、大口径镜片去应 力技术和高精度自由曲面加工技术。基于这三项技术,团队开发的自由曲面反射 镜和鱼眼透镜,已经为深圳与宜兴的光学公司制备短焦投影仪用核心元器件,面 型精度均优于 0.5 微米以下,粗糙度优于 8 纳米。自由曲面反射镜和鱼眼透镜的 配合,在保证图像质量的同时,实现了短焦距和高投射比。团队研发的自由曲面 反射镜,双自由曲面反射镜,窄边平面反射镜及凸面反射镜
上海理工大学 2021-01-12
非线性光学超构表面
非线性光学效应在频率转换、全光开关、电光开关等领域有着重要应用,传统非线性光学晶体在激光频率转换领域已取得巨大成功。然而,随着光学计算、量子光学芯片等领域的不断发展,如何将非线性光学功能集成于微小尺寸的芯片上是光电集成领域的重要科学技术问题。近年来,光学超构表面的出现为设计与实现特定光场调控功能的新型非线性微纳光学元件提供了很好的契机。
南方科技大学 2021-04-14
首页 上一页 1 2
  • ...
  • 13 14 15
  • ...
  • 547 548 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1