高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
联想电子教室解决方案
产品详细介绍
联想(北京)有限公司联想电脑 2021-08-23
XE系列超级单体电子天平
天津市德安特传感技术有限公司 2022-08-05
BA系列超级单体电子天平
天津市德安特传感技术有限公司 2022-08-05
ML系列超级单体电子天平
天津市德安特传感技术有限公司 2022-08-05
基于相变材料的片上光电存算一体化器件的研发
现阶段所设计的存算一体器件单元结构如图 1 所示: 器件的基本结构由波导和功能层(由下到上分为加热层、电极层、保护层、相变材料(硫系化合物)层)所构成。拟通过在当前流行的绝缘层上硅(SOI)光子平台上集成四氮化三硅光波导的方式实现器件的光学读取功能,即在非常厚的硅衬底层上生长一层绝缘层二氧化硅和波导层,然后在基片上通过光刻、显影、刻蚀等工艺制备四氮化三硅波导。功能层主要用于实现器件的电学写入功能。加热器层的主要用途是与相变材料层形成电接触,通过较小的接触面积使接触处的热量集中,从而可以在较小的电压或电流下使相变材料发生相变。因此需要加热器层具备较好的导热和导电性能,同时在近 C 波段具有较低的光损耗,可采用石墨烯。电极层可用于提供相变材料器件单元所需要的编程电脉冲。当前拟采用硒掺杂的相变材料合金(如 GSST)作为器件的核心功能层的相变材料。该材料在通信/非通信波段显示了极低的光损耗和更高的品质因数,且相变前后在通信 C 波段具有足够大的光学常数反差,可在更恶劣的高温环境下进行操作,适用于硅基光子器件应用。 采用的主要技术手段包括: ① 依托于相变材料的电致和光致相变特性,通过电学编程、光学读取的方法实现器件的存储、算术运算和逻辑运算功能:  存储功能的实现:拟利用相变材料晶态低透过率和非晶态高透过率分别代表二进制中的‘1’和‘0’,实现数据存储(编程)功能。例如在电极两端施加合适的电脉冲,所产生电流流经加热层时,生成的热量主要集中在加热层和相变材料层接触处,使得接触处的相变材料发生相变,实现存储功能。在完成上述编程操作后,从器件波导输入端输入读取连续光。由于相变材料功能层对光强的吸收能力在编程和非编程区域间存在着显著的差异,因此当输入光经过波导后,其能量会因为相变材料编程区域的吸收而发生改变,进而显著改变输出光强能量。所以通过测量输入输出光强的能量之比(即透过率),可实现对先前编程区域的读取。  算术和逻辑功能的实现:通过调整编程电脉冲的幅度和宽度可以动态调控相变材料的相变程度,使得器件的中间透过率值可用于代表不同的数值,实现多级存储功能。所以拟采用输入脉冲数量对应加数的方法实现标量加法计算。同时由于所设计器件的读取连续光输出功率可视为读取连续光输入功率和器件透过率的乘积,因此可采用将输入功率和透过率作为被乘数和乘数的方法实现基本乘法运算。除此之外还可以将器件功能层的初始状态设置为非晶相,把晶化脉冲幅值和不足以产生晶化的脉冲幅值分别作为输入逻辑‘1’和‘0’;同时设定一个判定阈值并与编程后器件透过率的变化率进行对比,把高于和低于阈值的透过率变化率分别作为输出逻辑 ‘1’和‘0’;通过合理选择编程脉冲有望实现各种逻辑功能输出。 ② 基于器件透射率可调特性验证其实现神经突触的可行性。并依托所设计人工突触构建人工神经网络芯片,实现图像、语音和文本识别功能:  突触可塑性是大脑记忆和学习的神经生物学基础,也是人工类脑器件需要实现的首要功能。为实现突触可塑性,拟把相变材料和波导之间的耦合区域视为仿生神经突触,左右两端电极分别代表突触前和突触后,分别施加在两端电极上的电脉冲则作为突触前和突触后刺激。通过调节从左右两端电极输入耦合区域的电脉冲时间差对耦合区域的光透过率进行连续调控,进而依托于上述存算理论模型和实物器件仿真和实验实现仿生神经突触的脉冲时序依赖可塑性(Spike-Timing-Dependent-Plasticity, STDP)。  将不同波长的光脉冲序列输入所设计的突触单元, 经过相变材料的作用,脉冲强度发生变化,对应于乘法器。进而借助于微环结构,将不同波长的脉冲导入进同一波导中,该功能类似加法器。相加后的脉冲光强较小时,读取光与微环发生共振,在输出端口没有光强输出。当光强达到一定的阈值后,读取信号不再和微环发生共振,而是传播到输出端口。这一过程类似神经元脉冲信号的激发,实现了非线性激活函数的功能。利用上述的单个神经元结构,验证其监督式机器学习和非监督式机器学习。对于监督式机器学习,权重的数值通过外部管理器设置;对于非监督式机器学习,不再需要外部管理器来设置权重值,而是通过输出光脉冲进行反馈控制,调整权重值。在单个神经元结构的基础上,更复杂的光学脉冲神经网络结构,证明该结构的可扩展性。拟设计的神经网络中的每一层结构包括三个功能单元,即收集器、分发器和神经突触结构。收集器将上一层不同波长的光脉冲信号收集到同一根波导中,分发器将光脉冲分发给多个神经元,神经突触结构则产生光脉冲信号,输入给下一层结构。基于上述结构实现图片、语音和文本的识别。 创新性分析:①首次研究了一款基于“电学编程、光学读取”模式的光电混合存算一体化器件。与传统电学存算一体化器件相比,拟研发的器件可以进行长距离的信息传输,具有传输带宽高、信号间延迟低、损耗低、抗干扰、集成密度高等优点。②采用硒(Se)掺杂的相变材料作为存算一体化器件的核心功能材料。与采用其他相变材料的存算一体器件相比,以硒参杂的相变材料作为功能材料的存算一体器件有望展现出极低的光损耗。③提出了一种基于“电学脉冲刺激、光学权重调节”的人工神经突触。该突触器件有望成为未来通用型人工神经突触,填补了光电混合型人工突触的技术空白。 先进性分析:①所提出的光电混合工作模式使得该存算一体化器件不但具有传统集成电路的高密度特性,且兼具光通信技术的宽频带、低延迟、抗干扰的优越性能。②所采用硒参杂的相变材料不但继承了传统材料具有的快速相变转化速度、低功耗和稳定性强等特性,且本身在通信波段非晶态透明的同时还保持了相变前后足够大的光学性能差异的特点。③所设计的突触继承了人工电子突触和全光突触的优点,具有高集成度、低功耗、超快响应时间、稳定性强等优点。 独占性分析:根据已取得成果正在撰写专利,以获得该关键技术的独有权。 
南京邮电大学 2021-05-11
磷化铟纳米柱径向同质结阵列结构的制备及高效光电转换器件
1. 痛点问题 目前硅基太阳能电池占据着太阳能电池的主导地位,其中单晶硅电池转换效率已可以达到25%左右,但它们需要比较多的单晶硅材料,生产成本高。而对于多晶硅,由于缺陷较多,转换效率比较低。III-V族材料转换效率高,但是材料和生产成本居高不下,难以推广使用。虽然可以利用纳米柱阵列来提高光吸收能力及减少材料成本,但是由于纳米柱结构具有很大的表面积,载流子较大的表面复合严重影响着器件的性能,而且需要昂贵的设备生长径向异质结和控制掺杂浓度。 2. 解决方案 本项目提出一种磷化铟纳米柱径向同质结阵列结构的简单制备方法,目前已完成高效太阳能电池验证和原型器件的制备,另还有可见光探测器等在研。 本方法是在磷化铟纳米柱制备过程中,利用刻蚀气体中加入氢气,可以同时实现了磷化铟纳米柱阵列和径向同质结的制备,通过控制刻蚀时间及氢气含量,精确控制磷化铟表面掺杂浓度及深度,相比于其他生长径向同质结的方法,本方法设备简单,制备效率高。在降低成本方面,纳米柱结构相比于平面结构具有更好的陷光效应,只需使用少量的材料便可以实现高效光吸收。 合作需求 本项目下一步发展需求主要集中在与太阳能电池相关企业的技术和产品合作,优化和固定产品制作工艺流程,降低生产成本。其次是资本投资、政府政策等方面的扶持。需要的外部资源主要是产业的工程化和市场资源。
清华大学 2022-03-09
一种具有微结构的a-Fe2o3光电极的制备方法
一种具有微纳结构的α-Fe2O3光电极的制备方法,具体作法是:取不锈钢片和钛片,用砂纸抛光,清洗,将洗净的材料超声处理,取出备用;配制电镀液,以钛片做阴极,不锈钢片做阳极,采用稳压直流电源电镀时间分别3-5s,室温30℃,电镀完后将钛片取出,洗净,晾干,得纳米铁立方体,再将覆盖有纳米铁立方体的钛片至于马弗炉中焙烧,取出即得微纳结构的α-Fe2O3光电极。该方法设备简单,能耗低,适合大规模生产;同时用该法制备的所制得的微纳结构的α-Fe2O3呈球形,可以对光进行全方位的反射,同时微米球表面分布很多纳米带,可进一步增强电极的比表面积,作为光电极,其光的利用率高,电流密度大。
西南交通大学 2016-10-20
纳米晶太阳能电池复合多孔电极膜
项目以改善NPC太阳能电池的光伏性能为最终目的,采用模板组装技术制备高质量的NPC电池用有序大/介孔复合电极膜,该法既简化了制备工艺,又可对薄膜的质量进行控制。该研究推动了NPC太阳能电池的产业化进程,同时该技术符合国家能源可持续发展的需要,在改善日益严重的能源危机及环境污染有非常重要的现实意义。
天津城建大学 2021-04-11
一种用于太阳能电池的材料
将 上转换紫外发光材料 Er3+:YAlO3/TiO2 或 Er3+:Yb0.2Y0.79N0.1F0.1AlO2.8 与 TiO2 的 复合膜用于 太阳能电池的电极材料,复合膜中 Er3+:YAlO3 或 Er3+:Yb0.2Y0.79N0.1F0.1AlO2.8 与的 TiO2 质量比为 1:9~3:7 ;采用提拉浸渍法制备 Er3+:YAlO3/TiO2 复合膜和 Er3+:Yb0.2Y0.79N0.1F0.1AlO2.8 /TiO2 复合膜
辽宁大学 2021-04-11
新型电池材料绿色合成与高比能电池应用
高比能电池面向国家重大需求,仅锂电池 2017 年市场规模已超过 1 亿 kWh,并且随着电动汽车、规模储能市场的迅速发展,电池需求快速增加,市场规模很快将超过 3000 亿元。 本项目为陈军教授团队十余年的研发成果,主要包含新型锂电池、钠电池、锌电池等新能源电池,可用于电动汽车、可再生能源风光发电储能等领域。 1. 开发了两类新型锂电池正极材料:取代型锰系尖晶石正极材料和掺杂型超高镍含量三元层状材料。这两种材料原料便宜、制备工艺(连续共沉淀与梯度加热)简单,成本优势明显,并且性能优异,产品晶相纯度高、形貌规整、振实密度大、长周期循环稳定性好。 2. 针对传统无机电极材料的不足,研发有机电极材料,它们由高丰度的 C、H、O、N 等元素组成,具有易合成、低成本、绿色环保等突出优点,并且由于可实现多电子反应,容量大、能量密度高,此外有机电极材料柔韧性强,在柔性可折叠等新颖结构电池体系中应用前景巨大。 部分有机电极材料在实验室中已实现公斤级制备,并组装 Ah 级软包全电池,经 18 所等权威机构检测鉴定,能量密度超过 300Wh/kg,通过安全性测试。计划 5 年内完成 1-2 种有机电极材料的中试,并实现部分电池产品的应用示范,具有清洁环保优势。 可合作宏量制备及大容量电池装配,推进中试和产业化,将产生显著经济效益、环境效益和社会效益。
南开大学 2021-02-01
首页 上一页 1 2
  • ...
  • 77 78 79
  • ...
  • 331 332 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1