高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
微流体脉冲喷射仪及配套微流体器件制备仪
微流体数字化技术通过对裸结构的微喷嘴实施脉冲的惯性力,使微量流体在惯性力与黏性力交替作用下实现微流体的脉冲流动,从而实现数字化可控的微量流体的喷射,适用于液体微喷射、粉体微喷射等领域。 成熟度:基于非晶态玻璃材料毛细加工原理,进行了拉制、锻制、残余应力热处理等工序研究,制作了出微纳米级的微喷嘴、微管道。以玻璃微喷嘴制备仪为平台研究了不同拉制参数、锻制参数对微喷嘴几何形状的影响规律。基于微流体脉冲驱动-控制技术,分别采用拉制、锻制的微喷嘴稳定地制备了均一的微液滴。 微流体
南京理工大学 2021-04-14
硅基上III-V的直接外延及器件集成
采用光互连技术可以有效的解决集成电路进一步发展的尺寸限制同时可以极大的提高芯片间信息传输的速度和频率。Si基光子集成是实现集成电路光互联的核心技术和重要研究方向。然而,Si因为其间接带系的特性很难作为发光材料使得Si基光源的缺失成为制约Si基光子芯片的瓶颈,而传统Ⅲ-Ⅴ族材料如GaAs,InP等由于优良的光电转换效率已经在光电子器件领域得到广泛的应用。因此,Si基与Ⅲ-Ⅴ的集成是实现Si基光子芯片的一种理想途径。
南京大学 2021-04-14
钨酸镉闪烁单晶材料的制备技术与器件应用
宁波大学晶体材料实验室在国际上首次成功开发钨酸镉(CWO)闪烁单晶的坩埚下降法生长技术,自主掌握CWO单晶材料制备专利技术。 一、项目分类 关键核心技术突破 二、成果简介 闪烁单晶是广泛应用于高能射线探测成像技术的光学功能材料。宁波大学晶体材料实验室在国际上首次成功开发钨酸镉(CWO)闪烁单晶的坩埚下降法生长技术,自主掌握CWO单晶材料制备专利技术。近年来所制备闪烁单晶性能完全达到射线探测器制造所要求实用化指标,CWO闪烁单晶材料可广泛应用于安检设备、集装箱检查系统、CT诊疗仪等技术领域。迄今已经形成单晶原坯、多规格晶片和单晶阵列的批量生产能力,相关材料产品已销往国内外相关射线探测成像设备制造厂商。 
宁波大学 2022-08-16
超声纳米烧结快速实现高功率器件的封装互连
针对汽车电子、5G通讯基站、航空航天及电力电子设备等功率电子元器件难以在高温、大电流/电压、潮湿等恶劣工作环境下服役的难题,并且要求芯片封装互连接头尺寸更小、高温稳定性更好、可靠性更高,本团队首次采用超声辅助纳米烧结的新型互连工艺,利用纳米银包铜颗粒作为焊料,成功获得大功率器件高温高可靠服役要求的互连接头,为高功率芯片贴装高导热界面制造提供了新材料和新工艺。
哈尔滨工业大学 2021-04-14
基于白光LED器件的可见光无线通信系统
南京邮电大学 2021-04-14
太赫兹波谱与成像理论及功能器件基础研究
本项目通过多年研究,发现了物质/结构在太赫兹波段产生的共振、吸收、折射、滤波、偏振等多种新现象和新效应。发展了太赫兹波物质探测、低损传输、高速控制和光谱成像的新手段和新方法。在太赫兹波谱应用和功能器件研究方面取得了重要进展,研制出多种实用化的太赫兹功能器件。近5 年来在Appl. Phys. Lett., Optics Letter, Optics Express, J. Opt. Soc. Am.等国际主流期刊上总共发表SCI 论文57 篇。申请国家发明专利22 项,已授权专利7 项。本项目多项研
电子科技大学 2021-04-14
一种基于忆阻器件的神经元电路
本发明公开了一种基于忆阻器件的神经元电路,本发明中,突 触阵列的忆阻器选用部分易失性双极性电阻转变器件,表达神经元膜 电位的忆阻器选用易失性电阻转变器件,构建神经元电路,并具有突 触基本单元。该神经元电路能够实现生物神经元中的整合放电功能, 表达出局部分级电位,突触具有部分易失性,可以表达活动时序相关 的可塑性,与生物学上神经元与突触在信息存储、传递与处理方面有 极大相似性。本发明可以为硬件模拟大脑神经网络结构提供基
华中科技大学 2021-04-14
一种磁隧道结单元及自旋电子器件
本发明公开了一种隧道结单元及磁随机存储器,包括依次连接 的第一电极、第一自由层、非磁性绝缘层、钉扎层和第二电极,还包 括连接在第一电极与第一自由层之间的第二自由层,第二自由层的横 截面积小于自由层的横截面积;第二自由层和第一自由层一起形成了 复合自由层结构;第二自由层用于聚集电流,使得第二自由层处的电 流密度大于第一自由层处的电流密度,从而使得第二自由层的磁矩先 于第一自由层发生翻转;由于第二自由层和第一自由层之间的
华中科技大学 2021-04-14
一种磁隧道结单元及自旋电子器件
本发明公开了一种隧道结单元及磁随机存储器,包括依次连接 的第一电极、第一自由层、非磁性绝缘层、钉扎层和第二电极,还包 括连接在第一电极与第一自由层之间的第二自由层,第二自由层的横 截面积小于自由层的横截面积;第二自由层和第一自由层一起形成了 复合自由层结构;第二自由层用于聚集电流,使得第二自由层处的电 流密度大于第一自由层处的电流密度,从而使得第二自由层的磁矩先 于第一自由层发生翻转;由于第二自由层和第一自由层之间的
华中科技大学 2021-04-14
面向 5G 通信基站用氮化镓基射频器件
(一)项目背景 当前以硅、砷化镓为代表的第一和二代半导体接近其物理极限,以氮化镓、碳化硅为代表的第三代半导体是当前国际竞争热点,也是我国发展自主核心半导体产业、实现换道超车的难得机遇。氮化镓(GaN)特别适合制作高频、高效、高温、高压的大功率微波器件,是下一代通信、雷达、制导等电子装备向更大功率、更高频率、更小体积和抗恶劣环境(高温抗辐照)方向发展的关键技术。 目前氮化镓基射频器件已接近于商用,需解决从走出实验室到小量中试的最后“1 公里”,重点攻克其在可靠性工艺和量产稳定性的瓶颈。 以氮化镓、碳化硅为代表的第三代半导体是当前国际竞争热点,也是我国发展自主核心半导体产业、实现换道超车的难得机遇。 半导体作为信息时代的“粮食”,将成为 5G 基建、特高压、城际高铁和城际轨道交通、新能源汽车充电桩、大数据中心、人工智能、工业互联网等“新基建”七大领域发展的支柱性产业。而氮化镓为代表的宽禁带半导体先进电子器件,凭借其高效、高压、高温等优势,将在“新基建”中大放异彩,可以弥补传统半导体器件的技术瓶颈,满足更高性能器件要求。 (二)项目简介 5G 要求更高的数据传输速率,发射机的效率会出现指数级的下降。这种下降可以使用包络跟踪技术来修复,该技术已经在较新的 4G/LTE 基站以及蜂窝电话中采用。基站中的包络跟踪需要高速,高功率和高电压,这些只有使用 GaN 技术才能实现。诸如 GaN 助力运营商和基站 OEM 等实现了 5Gsub-6-GHz 和 mmWave 大规模 MIMO 的目标。 GaN 可以说为 5Gsub-6-GHz 大规模 MIMO 基站应用提供了众多优势:1、在 3.5GHz 及以上频率下表现良好,对比其他产品优势明显。2、GaN 的特性能转化为高输出功率,宽带宽和高效率。采用 DohertyPA 配置的 GaN 在 100W 输出功率下的平均效率达到 50%至 60%,明显降低了发射功耗。3、在高频和宽带宽下的效率意味着大规模 MIMO 系统可以更紧凑。4、可在较高的工作温度下可靠运行,这意味着它可以使用更小的散热器。 根据 Strategy Analytics 的数据,预计 5G 移动连接将从 2019 年的 500 万增长到 2023 年的近 6 亿。所以需求还将不断上涨。 根据Strategy Analytics的数据,预计5G移动连接将从2019年的500万增长到2023年的近6亿。所以需求还将不断上涨。 Efficient Power Conversion 的首席执行官兼联合创始人Alex Lidow 讨论5G时也说道:“基站中的包络跟踪需要高速,高功率和高电压,这些只有使用GaN技术才能实现。根据Yole Development公司发布的2018年度报告数据显示,随着全球整体数据流量的激增,我国5G产业将迎来大规模的需求增长。预计到2022年,我国5G基站规模将达到千亿市场,5G基站数量将达百万个。所以未来氮化镓基射频器件是5G通信基站收发端的核心。 氮化镓基射频器件是华为和中兴发展 5G 通信产业的核心器件,西安电子科技大学氮化镓射频器件研究团队自 2016 年起就与华为西安研究所、中兴西安研究所等国内主流5G通信公司协同攻关开展氮化镓基射频器件的研究,目前承担的流片服务项目合计约 500 万元。 2017 年,西安电子科技大学与西安市高新区、西电电气集团等联合成立“陕西半导体先导技术中心”,中心致力于推动陕西第三代半导体产业发展,促进以氮化镓为代表的射频器件、功率器件等加速产业化,2019 年团队向陕西半导体先导技术中心转让专利 35 项,作价 2000 万元,双方正在联合推进搭建第三代半导体中试平台,平台将会立足西安,服务全国,提升氮化镓基射频器件量产工艺可靠性,实现相关技术成果转化。 (三)关键技术 本项目由西安电子科技大学作为技术攻关的主要单位,制定技术路线,保障国家重大科技专项“高效 GaN 微波功率器件及可靠性研究”和“5G 移动通信 GaN 芯片可靠性机理研究”研究,与华为和中兴联合开展工程合作项目实施,加快解决器件工艺可靠性工程问题,重点开展氮化镓微波功率与太赫兹器件工程技术研究,突破高性能低缺陷外延材料生长、高效率高可靠氮化镓微波功率器件工艺技术等关键瓶颈问题,协助规模量产高效率 S-Ku 波段典型氮化镓功率器件和模块、5G 基站核心射频模块。
西安电子科技大学 2023-07-12
首页 上一页 1 2
  • ...
  • 33 34 35
  • ...
  • 49 50 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1