高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
NK-80S光纤熔接机
青岛诺克通信技术有限公司 2021-09-10
VG095M光纤陀螺仪
产品详细介绍 产品名称:VG095M光纤陀螺仪产品简介: 光纤陀螺仪VG095M是一款微型精密传感器,基于光纤陀螺仪VG941-3AM,改进了偏值和比例因子稳定性, 通过电压的形式响应运动物体的角速率,输出电压的符号依赖于绕敏感轴旋转的方向。技术参数:重量 80 gram尺寸 25 x 35 x60mm功耗 1 Watt零偏稳定性 15 deg/h比例系数 12mV/deg/s比例系数稳定性 0.1 %随机游走 0.03 deg/ sqrt h测量范围 300 deg/s带宽 0...450 Hz工作温度 -30°C ... +70°C存储温度 - 55°C … +85°C振动 6 g (RMS), 20Hz... 2000Hz冲击 90 g, 1 ms 联系人:季文娟TEL:029-82501710-803 、 18729268128QQ:317244831
陕西航天长城科技有限公司 2021-08-23
高性能电机及其健康状态监测系统研发技术
团队具备成熟的高性能电机研发能力,具备瞬态有限元仿真技术、多物理场联合仿真技术、场路耦合仿真技术,能够定制开发有刷/无刷直流、感应电机、电励磁/永磁同步等各类电机,助力多家企业实现核心电机自主化、国产化。 团队研发了基于空间磁场的高性能电机健康状态在线监测系统,能够实时监测电机健康状态,即使发现电机微小故障,有效提高电机可靠性。
重庆文理学院 2025-05-19
一种人参冻干工艺的优化技术
人参作为传统中药材,早在《神农本草经》中就被列为上品,具有“补中益气,养血安神,强壮体魄”的功效,长期以来在中医药中占据着重要地位,尤其在提升体力、增强免疫力等方面有显著作用。 随着现代技术的发展,冻干技术的应用为人参加工带来了革命性变化。通过低温和真空环境下的升华原理,冻干技术能够去除新鲜人参中的水分,最大限度保留其活性成分、营养物质和药效。这不仅延长了产品的保质期,还改善了产品的便捷性,便于储存和运输,适应了现代消费者的需求。 本项目专注于人参冻干技术的研发,旨在提高人参产品的质量与市场竞争力。冻干后的产品不仅保留了原有的药效和营养成分,还具有更长的保质期,能够广泛应用于人参粉、营养补充品、保健食品等多个领域。同时,项目优化了冻干工艺,提升了有效成分的提取率,确保最终产品在营养和药效上的最大保留。 通过技术创新与产业化应用,本项目将推动人参产业的现代化发展,提升人参附加值,满足国内外市场对高品质人参产品日益增长的需求,为行业带来更多发展机遇。 1. 目标市场与市场规模: 本项目主要面向国内外高端健康食品、保健品和营养补充品市场,重点关注中老年人、亚健康人群及健身爱好者。随着生活水平提高,年轻消费者也逐渐关注天然、绿色健康产品,冻干人参成为理想选择。全球人参市场年增长率约为5%-7%,冻干人参的潜力尤为巨大,特别是在高端健康领域。 2. 市场竞争预测: 目前,国内外已有企业涉足人参冻干技术,但大多数仍处于初步阶段,技术尚不成熟,且现有产品集中于中低端市场,冻干工艺不够精细,导致有效成分损失较大。竞争者包括传统人参生产商和新兴健康品牌。随着消费者对品质要求提升,市场将向高品质、高效能产品倾斜。本项目的冻干技术创新和产品高端化,使其具备强大竞争力,有望迅速占领高端市场份额。 3. 本项目核心竞争优势: 本项目的核心竞争优势在于冻干技术创新。相比传统工艺,项目技术能更好保留人参中的有效成分,提高营养价值和药效。产品形态多样(如粉末、颗粒、薄片等),满足不同消费者需求,提供便捷使用体验。项目在原材料采购、生产环节和质量控制上的优势,确保产品的高品质和稳定性。随着市场对高品质健康产品需求增长,本项目具备较强的技术壁垒和市场竞争力。
延边大学 2025-05-19
MXY5008光纤耦合及光无源器件参数测试与 光纤端面处理熔接实训系统
一、产品简介        光纤通信作为一门新兴技术,它具有容量大、中继距离长、保密性好、不受电磁干扰和节省铜材等优点。近年来发展速度快,已被广泛应用到军事通信、民用通信等各种领域,是世界新技术革命的重要标志和未来信息社会中各种信息的主要传送工具。在光纤的使用过程中,光纤线路的耦合对于其中光功率的传输至关重要。其中存在着两种主要的系统问题:1、如何从多种类型的发光光源将光功率耦合进一根特定的光纤;2、如何将光功率从一个光纤发射出来后经过特定的装置耦合进另外一根光纤。光无源器件是光纤通信设备的重要组成部分。它是一种光学元器件,也是其它光纤应用领域不可缺少的元器件。该实验仪重点介绍了常用的光无源器件的相关参数及测试方法。为此公司研制出本实验系统,让学生了解和认识光纤耦合的相关参数和特性、光无源器件的相关参数及测试方法等,通过实验平台的搭建,可以让学生更深刻的了解,也能锻炼学生校准光路等方面的动手能力,是学校金工实习(工程实习)与工程检测的不二之选。 二、实验内容 650nm激光器与光纤耦合实验 1550nm光纤激光器与光纤耦合实验 相同模式光纤之间耦合实验 不同模式光纤之间耦合实验 光源与显微物镜及准直器耦合特性对比实验 光纤转换器测试实验 光纤变换器测试实验 光纤耦合器测试实验 光纤隔离器特性测试实验 波分复用器和解复用器测试实验 可调光纤衰减器测试实验 光纤机械光开关特性测试实验 光纤偏振控制器特性测试实验 光纤偏振分束器(PBS)性能能参数测试实验 不同种类光纤、光缆及光器件认知和操作实验 熔接机原理及使用实训操作实验 剥纤、清洁、切纤及光纤接续实训操作实验 手动模式下,光纤熔接实训实验 自定义模式下,光纤熔接实训实验 光纤端面处理基本操作实验 光纤耦合技术基本操作实验 光纤耦合技术基本操作实验 光功率耗损法对光纤熔接质量测试 三、实验配置参数 1、光源:波长1310±20nm,1550±20nm;输出功率:1-2.5mw,连续可调;输出端口:FC/PC;稳定性<0.5db(5h);光源类型:LD光源; 2、光功率计:波长范围800-1700nm;输入接口:FC 校准波长:1550nm,1310nm; 3、偏振控制器:插入损耗<0.05dB;消光比>40dB;回波损耗>65dB; 4、光纤机械光开关:插入损耗:1310/1550  P1→P2 0.56/0.54 dB ,P1→P3 0.53/0.47 dB ;回波损耗>50dB ;开关速度:≦8ms ; 5、高隔离度光纤隔离器:最大插入损耗:0.35dB ;回波损耗:≧50dB ;隔离度:≧30dB ; 6、光纤耦合器:分光比:50% : 50% ;最大插入损耗1310/1550: 3.3dB ; 7、光纤波分复用器:隔离度:1310nm :31.8% ;1550nm :34%;插入损耗:1310nm :0.30%;1550nm :0.34% ; 8、光纤可调衰减器:0-30db可调; 9、软件:配套仪器使用,数据采集处理; 10、光纤熔接机:适用光纤:SM (单模), MM (多模), DS (色散位移)光纤, NZDS (非零色散位移,即G.655光纤),BIF/UBIF(G.657); 光纤切割长度:8-16mm, 被覆光纤直径250µm,16mm,被覆光纤直径250µm-1000µm;平均接续损耗:0.02dB(SM)、0.01dB(MM)、0.04dB(DS)、0.04dB(NZDS);显示:高性能5.6英寸彩色LCD显示屏,提供清晰的数字图像显示;电极寿命:2500次;锂电池容量:典型熔接250次,充电时间3小时,可在充电时使用;电源:交流适配器输入电压100-240V  50/60Hz,输出电压:DC13.5V /5A,直流输入电压11.1v ( 内置锂电池8800mAh ); 四、实验目的  1、了解光纤连接器及其原理、种类,实验操作进行连接器参数测量; 2、掌握光纤头平端面的处理技术。 3、掌握光纤之间的耦合、调试技术,了解光纤横向和纵向偏差对光纤耦合损耗的影响。 4、掌握光纤熔接的基本技术。 5、熟悉光纤型号及结构,掌握其装配方法、使用环境及保护措施等;
天津梦祥原科技有限公司 2021-12-17
供应激光功率计、激光能量计//长春博盛量子
产品详细介绍    
长春博盛量子科技有限公司 2021-08-23
电子元器件激光机饮料瓶盖激光打码喷码机
产品详细介绍电子元器件激光打标,电感电阻电线电缆,饮料瓶盖激光打标流水线在线激光机口罩激光机都可以在线打标欢迎咨询!
上海康彦电子科技有限公司 2021-08-23
催化臭氧氧化与微生物降解近场耦合技术
        对于难降解工业废水的处理,单独催化臭氧氧化技术存在臭氧剂量大、气体回收难、出水毒性高等问题,而单独生物降解处理难降解有机废水周期长、设备成本高。催化臭氧氧化与微生物降解近场耦合工艺则将按序进行的催化氧化装置和生物挂膜装置两个处理单元合并,利用催化臭氧技术提高难降解有机废水的可生化性,同时采用生物膜技术减少后续处理成本,能够实现低成本提高COD、色度和浊度去除率的效果,同时降低出水毒性,减少环境生物风险。
东北师范大学 2025-05-16
城市气溶胶相态垂直分布的激光雷达遥感技术
大气气溶胶,即大气中的悬浮颗粒物。通常所说的PM10(粒径小于10微米,可吸入颗粒物)或者PM2.5(粒径小于2.5微米,可入肺细粒子)是大气气溶胶的重要组成部分。从生成来源上看,大气气溶胶分为一次气溶胶(Primary Aerosols)和二次气溶胶(Secondary Aerosols)。一次气溶胶指自然界或人类活动直接排放的气溶胶粒子;二次气溶胶指通过大气中的物理、化学过程新生成的气溶胶粒子。在大气污染过程中,汽车尾气以及人类其他燃烧过程中产生的氮氧化物、煤炭等含硫燃料燃烧产生的二氧化硫等气体通过参与这些复杂的过程产生二次气溶胶,即“气-粒”转化过程。二次气溶胶是重度霾过程的气溶胶污染物的重要来源。 大气气溶胶以固态、半固态或者液态几种形式的相态而存在,其相态与上述大气中的化学过程有着紧密的联系。气溶胶粒子可以作为大气化学反应的“容器”,在气溶胶表面或内部进行与二次气溶胶生成有关的化学反应。气相分子在不同相态的颗粒物中的传输速率差别很大,固态气溶胶几乎只有表面能发生气相化学反应,而液态气溶胶在颗粒内部也能发生化学反应。因此化学反应加速与液态气溶胶表面积和体积的增大会形成正反馈过程,在液态气溶胶上发生的异相化学反应生成二次气溶胶,对雾霾过程中颗粒物爆发性增长有重要的贡献。因此,对城市气溶胶在边界层内以什么相态存在的空间分布的探测,是研究二次气溶胶生成、演化和扩散所迫切需要的一项技术,对于理解雾霾形成的机理有着重要的意义。 气溶胶的相态与颗粒物的化学组分和环境的相对湿度有关。目前对于颗粒物相态的测量,通常仅限于地面采样观测,缺少垂直空间方向上颗粒物相态的探测手段。在颗粒物浓度相对较高的大气边界层内,垂直方向上相对湿度往往有很大的变化,气溶胶的相态也一定存在很大差异。 北京大学物理学院大气与海洋科学系李成才副教授研究组与北京大学环境科学与工程学院朱彤教授研究组、吴志军研究员研究组共同合作,提出了一种新的利用偏振激光雷达获得气溶胶粒子相态垂直廓线的方法。气溶胶粒子对入射电磁波的散射过程,会造成散射光偏振特性的改变,如果利用线偏振光照射,散射光的偏振度相对于入射光会减小,这种改变称为气溶胶的退偏振能力。利用激光雷达观测的大气退偏振比可以对气溶胶粒子进行分类,例如非球形的冰晶和沙尘具有较大的退偏振比,而近于球形的城市气溶胶细粒子具有较小的退偏振比,区分沙尘与城市细粒子气溶胶的观测技术在国内外已经比较成熟,通常也是激光雷达业务观测的一项主要内容。但是把类似的观测进一步应用于区分城市气溶胶细粒子的特性,国际上尚没有相应的研究结果。通常来说,固态颗粒物形状不规则,而液态颗粒物更趋近于球型,不同相态的粒子退偏振能力存在差异。结合激光雷达垂直观测以及地面颗粒物相态仪的测量,研究组发现,激光雷达观测的城市气溶胶细粒子后向散射退偏振比与气溶胶粒子的弹跳率(与相态相关)具有很好的关系,从而建立了利用气溶胶粒子后向散射退偏振比反演气溶胶相态的参数化方案,并在国际上首次实现了长时间实时连续的气溶胶相态垂直廓线的探测。偏振激光雷达反演气溶胶粒子相态概念图 该研究成果已在线发表在美国化学学会(ACS)主办的环境与生态领域国际顶级期刊Environmental Science & Technology Letters(2018 IF=6.934)上。大气与海洋科学系博士研究生檀望舒为论文第一作者,通讯作者为李成才副教授。北京大学为唯一通讯作者单位。论文评审人之一对论文成果基于高度评价:“......to my knowledge, it is the first time in field studies. Particle phase states have been a hot topic because they can potentially influence the rates of gas-particle partitioning and multiphase reactions. I think this is a timely paper on this topic. The use of lidar depolarization to detect the particle phase states is novel”。
北京大学 2021-04-11
彩色镭雕激光打标高分子材料的制备技术
在塑胶包装行业,镭雕标记技术日益兴起,近年来,利用激光在聚丙烯等塑胶制品表面进行雕刻标记得到了广泛应用,但镭雕高分子材料仅能够进行黑色、白色和灰色的激光标记,色彩单一且缺乏视觉吸引力。江南大学开发出新型彩色镭雕激光打标母粒,与聚合物材料熔融共混,几乎不影响任何聚合物自身性能, 制备出色彩丰富的镭雕激光打标聚丙烯材料。本技术拓宽了激光打标应用,提高激光打标色彩丰富度与外观效果,增强了激光标记产品的市场竞争力,已在国内外企业推广使用。
江南大学 2021-04-13
首页 上一页 1 2
  • ...
  • 18 19 20
  • ...
  • 731 732 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1