高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
班班通录播音频采集与处理平台
功能特性: 高灵敏度全指向阵列咪头,覆盖方圆近10米空间,声音干净自然; DSP数字阵列对比算法,自适应动态降噪,完美去除环境噪声; 全数字自动增益,远近距离说话,拾音大小效果一致; 集成班班通音频信号管理平台,所有音频设备集中管理使用,节约投入,便于维护。   本设备采用处理器与拾音器分离设计,拾音器与处理器通过一根或者两根专用数据线连接,实现音频和电源共线远距高保真传输,拾音器由处理器集中供电。处理器外壳采用标准19英寸机柜设计,1U高,可直接与其他录播设备固定安装在机柜里面,由机柜直接通过市电供电,与其他设备集中管理维护。 处理器集成多功能音频处理平台,具备高速DSP语音处理模块、多路自动混音、环境噪声消除、自动增益、前级放大、多路输入输出音频管理、每路输出音调调节、输出音量调节、单独和混合输出等多种功能。实现一台机器即可接入管理班班通里所有的音频设备,如无线麦克风、电脑音频、校园广播等,处理器直接输出音频至录播主机录音和功放扩声使用,避免使用一般监控类拾音器需要额外增加比如调音台、混音器、前级放大器等设备,节省投入,大大减轻维护工作量。 本设备提供单拾音器和双拾音器两种配置方案,可根据空间大小和形状选购安装。一般类似方形规整空间,可选用单拾音器方案,用一个配套的专用拾音器安装在空间中央天花上,实现整个空间的声音采集;如果是狭长型空间或者过大空间(如100平方米或以上),则选用双拾音器方案,用配套的两个专用嵌入式拾音器,前后分布嵌入在天花上,进行整个空间的声音采集。实现一个平台满足不同空间需求的高效配置。
恩平市雅克音响器材厂 2021-08-23
一种基于云计算的数控系统数据采集及处理方法
本发明公开了一种基于云计算的数控系统数据采集及处理系统, 包括由远程服务器集群搭建而成的云平台,该云平台包括计算服务器 集群和存储服务器集群,计算服务器集群中集成有虚拟机集群,且分 别与数控系统和存储服务器集群连接通信,虚拟机集群具有多个分布式并行计算单元,用于执行数据采集与并行计算,存储服务器集群中 用于对采集或分析处理后的车间数据进行分布式存储。本发明还公开 了相应的方法。本发明以虚拟机代替实体机实现并行计算,并通过虚 拟化管理平台对虚拟机集群进行管理,使车间服务器资源不再受单点 配置的限制,并
华中科技大学 2021-01-12
一种基于 Storm 实时流计算框架的消息可靠处理保障方法
本发明公开了一种基于 Storm 实时流计算框架的消息可靠处理 保障方法,包括:①预处理阶段,对环境做初始化工作;②集群计算 过程中对已经发射并正处于计算状态的数据进行跟踪;③发射任务在 监听到消息处理成功的信号时,清空缓存区中属于它的所有子元组的 跟踪信息;④发射任务在监听到消息处理失败的信号时,定位产生处 理失败的任务的位置和待恢复数据;⑤根据跟踪信息和 xml 文件构建 消息恢复程序,然后从缓存区读取待恢复数据
华中科技大学 2021-04-14
相控阵三维声学摄像声纳实时信号处理和图像构建关键技术
本项目在 2 项国家自然科学基金项目和国家"863"计划海洋重大专项连续 3个五年计划滚动支持下,历经 10 多年产学研联合攻关,研究并掌握了基于稀疏换能器阵列的三维成像规律,发明了适用于近场和远场条件下的换能器阵列稀疏方法,解决了换能器阵元数量巨大所导致的高系统复杂度难题;研究了波束形成算法的计算机制,发明了分布式子阵波束形成实时处理算法和动态三维图像构建方法,实现了水下高分辨率三维场景的实时成像;发明了基于大规模 FPGA 的并行处理系统架构,实现了 128×128 个波束信号的高速实时计算,成功研制了高分辨率相控阵三维声学摄像声纳系统,为我国海底探测和水下安防等提供了一整套高端先进的探测手段。本项目的成果打破了国外的技术垄断,填补了国内空白,作为国家重大科技成果参加了“十一五”国家重大科技成就展。本项目共申请国家发明专利 18 项,其中授权 14 项;获得美国发明专利授权 2 项;获得软件著作权 3 项;发表 SCI/EI论文 16 篇;经由两位院士和其他专家组成的专家组鉴定,项目总体技术水平达到国际领先,为行业进步起到重要的推动作用。
浙江大学 2021-04-11
一种基于图像分割的数字体积相关算法中边界处理方法
本发明公开了一种基于图像分割的数字体积相关算法中边界处理方法,该方法首先区分感兴趣区域和背景区域,然后对要进行DVC计算的其中一套三维图像进行图像分割,分割为感兴趣区域(VOI)和背景(BG)两部分,在进行DVC计算时只计算VOI内的计算点的位移和应变;计算位移时,子体块间的相关性匹配仅仅针对VOI部分,计算应变时,只利用VOI内的位移点来求解应变。此外,本发明通过区分子体块还有应变计算窗口内的连通域个数,只利用子体块或者应变计算窗口内的主连通域去计算位移和应变,进一步提高了处理复杂轮廓或者边界时计
东南大学 2021-04-14
一种基于图像处理技术的群集运动数据采集方法及系统
本发明公开了一种群集运动实验数据采集方法及系统,方法包括以下步骤:在实验场景中采集群集运动目标的视频;从当前视频帧中提取目标运动区域;对目标运动区域滤除背景;将滤除背景的目标运动区域与目标灰度阈值进行比较,判定大于目标阈值的像素点为可疑目标像素点,将邻近的可疑目标像素点视为一个可疑目标;将可疑目标与预定目标长度、宽度和面积阈值进行比较,判定可疑目标为个体目标、多目标重合、非目标中的一种;根据历史目标位置、速度和
华中科技大学 2021-04-14
面向工业系统智能优化与决策的边缘计算平台
同济大学电子与信息工程学院康琦教授团队面向复杂工业过程智能运维,深度融合物联网、大数据、人工智能等技术,设计开发了高集成度与模块化的边缘计算平台。该技术采用云-边-端一体化的系统架构设计,结合迁移学习、演化计算等智能技术,构建了可持续学习的通用网络进化框架,针对不同应用场景,通过模型与算法的模块化管理与轻量化学习,可实现边缘侧模型定制与部署,全面感知系统动态,自适应环境与工况变化,实现无人值守的工业过程在线学习、智能控制与持续优化,显著降低运行成本,提升企业经济效益。边缘计算平台架构 目前该技术已经获得相关授权发明专利6项,面向钢铁冶炼、汽车制造、污水处理、轨道交通等领域,在多个省市的节能控制与运营优化相关智能化工程项目中得到了推广应用,平均节能达30%,经济效益明显。基于该平台技术对城市污水处理厂生物曝气过程进行自适应软测量建模与学习优化控制,实现了多目标联合优化的在线智能监控系统,年平均节电超过27%。对大型制造企业的多车间冷源系统实现了全自动在线优化与智能控制,系统能效提升一倍,年平均节电36.9%。
同济大学 2021-04-11
医学影像计算机存档与传输系统(PACS)
 PACS(Picture Archiving and Communication Systems)是医学影像计算机存档与传输系统的简称,是近年来随着数字成像技术、计算机技术和网络技术的进步而迅速发展起来的、旨在全面解决医学影像的获取、显示、存贮、传送和管理的综合系统。本设计方案完全遵循DICOM3.0国际标准(Digital Imaging and Communications in Medicine),符合医院的工作流程习惯,并可根据医院的实际需求提供整套的PACS解决方案,以满足医院实用、具有良好的扩展性和柔软性。 以读片诊断中心(PACS Station)为中心可组建PACS系统的各个模块,如下图所示。具体的PACS项目可根据医院的规模和投资的大小构成,组建不同级别的PACS系统。   1、放射与核医学影像中心 该模块将医院的CT、MR、DSA、CR、DR、RF等数字影像设备获得的标准DICOM影像传输到PACS系统,进行存储、管理,并通过读片中心显示和诊断。它遵循DICOM3.0国际标准,可以将所有满足该标准的数字影像设备轻松地接入PACS系统,具有无限的可扩展性。 2、视频设备 该模块将超声、内窥镜、病理等视频设备获得的非DICOM影像通过DICOM网关转换成DICOM影像,接入PACS系统。 3、登记与管理 该模块完成病人及其检查项目的登记、预约、病历管理、科室管理和系统维护等功能。包括放射科登记、核医学登记、超声登记、内窥镜登记、病理登记、急诊登记等。 4、DICOM照相输出 该模块将PACS系统中病人的DICOM影像和诊断结果进行编辑,通过激光相机打印,输出胶片。还可以将病人的胶片通过高精度扫描仪转换成DICOM数字影像,输入到PACS系统中。 5、诊断读片报告中心 该模块是PACS系统的核心部分,可以完成调阅病历和查询病人检查状态、阅读各种检查的影像资料、编辑诊断结论和审核等功能。诊断读片工作站具有强大的影像处理功能,可以对图像进行多模式调入、锁定、调节窗位窗宽、放大/缩小、移动、旋转、图像测量、标注、动态播放、伪彩、滤波、均衡、反相、拷贝、导出等操作,支持双屏浏览,内含放射影像描述专家系统,帮助医生快速生成诊断报告。 6、PACS影像存储中心 该模块由PACS服务器和RAID磁盘阵列构成,实现PACS影像的海量存储和自动备份管理。RAID磁盘阵列实现TB级的在线影像存储,可管理医院3-5年的影像资料。可外接CD-R、DVD-RW或磁带机,实现历史影像资料的离线存储。所有在线和离线影像均由数据库统一管理。     7、WEB发布与远程诊断 该模块通过WEB服务器实现B/S方式的影像资料的共享,医生工作台只需IE网络浏览器而不需要安装其他软件,即可浏览影像资料和诊断结论,方便临床和门诊医生。 8、HIS互连 该模块可根据医院现有HIS系统结构,实现PACS系统和HIS系统的互连。 本次开发包括上述的1至6模块,7和8模块作为本系统未来的可扩充功能。 读片诊断工作站(PACS Station)是PACS系统中的核心模块,其他的模块都是为它服务的。它接受和管理所有数字影像设备送来的DICOM影像,从数据库中获取病人的信息,在高精度影像显示器上显示检查的图片资料,对病灶部位的重要影像进行一系列操作,并帮助医生做出最后的诊断。系统结构如图所示。 “管理工作站”负责将病人的基本信息、检查申请和医嘱输入PACS数据库。病人在CT(或者MR、DSA、RF、CR、DR等)做完检查后,检查的影像资料通过DICOM网关PACS Station的DICOM服务器。DICOM服务器将资料存入工作站的影像文件库的同时,通知数据库影像的位置和修改工作流(Workflow)的状态。最后,医生通过读片诊断工作站(PACS Station)主程序,从数据库读取病人信息,从影像文件库读取检查影像并显示,使用该工作站提供的工具对影像资料进行调入、调窗、放大、缩小、移动、旋转、测量(长度/角度/面积)、标注等一系列的操作,键入诊断结论并输出。 适合于中小型医院、县级医院、医学院和大学的附属医院等。 主要技术指标:  PACS Station的主要技术指标如下: 1、PACS Station支持的医学影像的分辨率和灰阶值 医学影像模式 分辨率 灰阶值 X射线 2048x2048 12 CT 512x512 12-16 DA或DF 512x512 8-12 1024x0124 2048x2048 MRI 256x256 12 NMI 64x64 8-16 128x128 256x256 US 64x64 16-32 128x128 2、影像分割模式:有1x1,1x2,2x2,2x3等四种模式(用户可自定义)。 3、调窗:支持鼠标快速调窗;精细调窗;窗宽调节等。 4、影像大小调节:支持 l  无级缩放:缩放倍数无限可调; l  放大镜:在鼠标所在处出现一个方框,方框可自由移动,框内图像被放大一倍; l  图像满幅显示:恢复到图像被载入时的初始状态; l  原始大小显示:被选中的图像以实际物理大小显示。 5、图像移动与翻转:支持 l  图像移动:用鼠标按住图像,直接拖动; l  图像翻转:可水平镜像和垂直镜像翻转; l  图像旋转:可按顺时针或逆时针方向0-360度任意旋转。 6、图像测量:支持以下方式 l  点测量:显示鼠标所在点的CT值(或灰度值)以及坐标; l  长度测量:显示鼠标给定的两点间的长度; l  面积测量:可按矩形、椭圆形和任意多边形显示和测量面积,并显示测量区域CT值的最大、最小、均值等统计参数。 7、图像标注:可用一条标注斜线和矩形方框指向一图像区域,在方框中可输入标注文字。 8、图像动态播放:可按键:“播放”、“暂停”、“首帧”、“前一帧”、“后一帧”等连续显示一个序列的图像。 9、图像处理:支持 l  图像伪彩:对原始黑白灰度的图像,按一定的映射关系转成彩色,增强显示效 果; l  图像增强:通过对比度的线性展宽,提升高灰阶值像素的灰度,抑制低灰阶值 像素的灰度,达到增加对比度的效果; l  中指滤波:显示中指滤波后的图像; l  直方图均衡:显示直方图均衡后的图像,增强原图像中较暗的部分,增强细节; l  反相:显示负片效果的图像。 与国内外技术水平及价格比较: 成果鉴定认为,该PACS系统的各项技术指标已经达到了国际同类产品的先进水平。而系统造价只有进口产品的五分之一到十分之一。 市场应用前景: 根据市场权威部门统计,我国县级以上医院每年用于PACS系统的投资都在50亿人民币以上,并且平均每年以20%的速度递增。市场前景非常客观。
北京交通大学 2021-04-13
超高分辨率图像增强与显示芯片(产品)
成果简介:超分辨率图像重建技术是近年来发展迅速的图像处理新技术,其 目的是超越成像传感器、成像和信道的分辨极限,利用所获低分辨率图像, 实现高分辨率图像的重建。超高分辨率图像增强与显示芯片项目利用超分辨 率图像实时处理技术,实现从一幅或多幅低分辨率视频图像处理获得高分辨率图像,在图像被放大的同时增强图像更多的细节,提高图像的清晰度和分 辨率,实现摄像传感器的低分辨率与显示器高分辨率之间的匹配,解决目前 图像获取与显示分辨率不匹配的瓶颈问题,在现有图
北京理工大学 2021-04-14
基于单目镜头的车辆图像检测、跟踪与测距系统
北京工业大学 2021-04-14
首页 上一页 1 2
  • ...
  • 8 9 10
  • ...
  • 473 474 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1