高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
快速响应的水凝胶薄膜光学传感技术
本技术是利用智能水凝胶的刺激响应性,结合Fabry-Perot薄膜干涉现象提出的新型光学传感方法。本技术使用的水凝胶薄膜厚度仅数微米,因此具有响应速度快速的特点。可检测的项目包括温度、pH值、葡萄糖等。可与光纤传感技术相结合,实现远程传感。
南开大学 2021-04-14
硅基薄膜太阳能电池制备技术
本项目采用隧道结技术实现叠层太阳能电池的制备,扩展电池的光谱收集范围,提高电池的转换效率。 一、项目分类 关键核心技术突破 二、成果简介 太阳能是大自然赐予人类最清洁,最丰富的能源资源,目前商用的太阳能电池以晶体硅电池为主,由于晶体硅消耗硅料较多,近年来人们一直致力于开发硅薄膜电池。非晶硅薄膜电池已经实现了商业化生产并有了一定的市场份额,但它仍存在不足之处,包括光致衰减效应和转换效率不高(约6%)等。本项目在国家863计划课题(2006AA03Z219)支持下,开展了以多晶硅薄膜、微晶硅薄膜和纳米晶薄膜的制备和相关材料的单结与叠层硅基太阳能电池关键技术研究,已经申请发明专利5项,发表科研论文20余篇。 三、创新点以及主要技术指标 1.利用LPCVD方法和自扩散技术生长多晶硅p-n结,结合层转移技术制备多晶硅薄膜太阳能电池; 2.采用金属诱导晶化和快速热处理技术实现优质多晶硅薄膜的制备并在低温下制备太阳能电池; 3.在PECVD和HWCVD生长硅薄膜时,通过生长温度,气体流量,氢气稀释比,腔室气压等参数实现微晶硅或者纳米晶薄膜的生长; 4.采用双层膜技术减小表面处入射光的反射并实现表面钝化,提高入射光的收集率和少数载流子寿命; 5.采用高低结结构增加光生载流子的收集效率; 6.采用隧道结技术实现叠层太阳能电池的制备,扩展电池的光谱收集范围,提高电池的转换效率。 四、知识产权及获奖 国家863项目(2006AA03Z219)
南京航空航天大学 2022-08-12
适用于绿色建筑的智能控温薄膜
通过对建筑物窗体的研究,自主研发出一种能够智能控制调节温度的VO2智能控温薄膜及其镀膜玻璃,是一种可以响应温度改变自身结构和光学性能的材料,可以使得窗体对太阳光辐射的反射率和透射率随外界温度的改变而发生变化,在可见光保持一定透过率(>50%)的前提下,使得夏天进入房间的太阳辐射少,冬天进入房间的太阳辐射多,从而保证房间舒适度的同时降低室内制冷采暖能耗。 一、项目进展 创意计划阶段 二、负责人及成员 姓名 学院/所学专业 入学/毕业时间 宋炳坷 材料/微电子学与固体电子学 2016/2019 赵起 材料/微电子学与固体电子学 2016、2018 刘帅 管理/企业管理 2016/2019 徐志龙 材料/材料学 2017/2020 王子璇 材料/集成电路工程 2017/2020 肖智戈 管理/管理科学与工程 2017/2020 范炜 材料/材料学 2017/2020 三、指导教师 姓名 学院/所学专业 职务/职称 研究方向 高彦峰 材料/材料学 研究员 材料学 四、项目简介 通过对建筑物窗体的研究,自主研发出一种能够智能控制调节温度的VO2智能控温薄膜及其镀膜玻璃,是一种可以响应温度改变自身结构和光学性能的材料,可以使得窗体对太阳光辐射的反射率和透射率随外界温度的改变而发生变化,在可见光保持一定透过率(>50%)的前提下,使得夏天进入房间的太阳辐射少,冬天进入房间的太阳辐射多,从而保证房间舒适度的同时降低室内制冷采暖能耗。该产品设计着眼于当前最先进的技术,立足于建筑节能材料研究前沿,以本团队关键技术作为支撑,目前团队制备的VO2基智能窗相关技术指标均处于世界领先地位。由于产品绿色友好,环保节能,适用于温带和热带绝大部分地区的建筑建造以及城市基础建筑节能改造,因此具有可观的应用前景和积极的社会意义。
上海大学 2022-08-12
全波段显色生物检测仪
全波段显色生物检测仪结合了最新的成像技术、全波段超稳LED光源技术、大视场高分辨率成像技术、智能数据处理技术、云数据采集平台,可以对生物免疫酶联反应、蛋白质浓度、血糖含量以及pH值等以显色为最终现象的生物信息进行便携式的、高速的、大批量检测。通过超稳定的成像技术、图像处理技术和发光技术,使用一次成像的方式对大批量生物样本进行瞬时检测,提高对肝炎、流感、艾滋病等传染性疾病的检测效率和准确率。该项技术同时可应用于肉制品、乳制品的质量检测,提高对猪病疫情、乳制品菌种群落监控的时效性
上海理工大学 2021-04-10
新乡医学院三全学院
新乡医学院三全学院于2003年获批举办,同年12月份,被教育部确认为独立学院。2009年2月,新乡医学院与中美集团签订合作办学协议,投资15亿元共建新乡医学院三全学院,推动学校发展进入了新阶段。学校推行“书院+院系”的“双院制”全新育人模式。目前设有基础医学院、护理学院等15个专业院(系、部),仁智、羲和等5个英式住宿制书院,教务部、学务部等27个职能部门。现有全日制本科(含专升本)、专科2个办学层次,23个本科专业及方向、7个专科专业,涵盖医、管、理、工、文5个学科领域。在校生共20485人。学校拥有专任教师882人,其中副高占比43%,硕士及以上占比78%。学校推行“人才强校”战略,外聘高校和行业、企业专家共210人。学校现有两个校区,分别位于新乡市区和平原示范区。新乡校区是新乡市的花园单位,占地面积128亩。平原校区建设项目被列为省重点建设项目,规划用地1400亩,建设预算投资15亿;目前已投资11.4亿元,建筑面积305776㎡。实验室共42类226间,教学、科研仪器设备1.2亿元。学校秉承“全面适应社会需求,全面实施素质教育,全面培育医学英才”的办学指导思想,坚持“建设地方性、高水平、有特色、应用型的健康服务大学”的发展目标,坚定“转型发展、内涵发展、特色发展”的中期发展战略,紧握“健康中国”战略与教育领域综合改革的重要机遇,突出办学特色,构建了以现代医疗服务为核心,以现代医疗装备与技术、生物医药、养老与康复、现代健康与医疗管理为两翼的覆盖全生命周期的五大健康服务专业集群,积极为地方经济社会发展提供人才保障和智力支持。办学十六年来,先后培养了30940名优秀毕业生,已逐步成长为一所特色鲜明、优势突出的新型高等院校。按照“合作一个企业,建设一个集群,打造一个模式,创造一个品牌”的思路,学校近年来转型发展成果显著。专业建设成果突出本科临床医学、护理学、眼视光学、康复治疗学、医学检验技术、生物医学工程、医学影像技术专业获批为河南省民办普通高等学校品牌专业,临床医学、护理学、康复治疗学、眼视光学获批为河南省综合改革试点专业。生物制药、假肢矫形工程、助产学、健康服务与管理、数据科学与大数据技术、智能医学工程为国家特设专业,口腔医学技术、眼视光学、智能医学工程、假肢矫形工程为河南省唯一开设的本科专业,健康服务与管理、助产学是河南省首批招生的专业。实验实训中心建设成效卓著35000㎡生物与基础医学实验教学中心、5000㎡国际护理实践教学中心是“河南省示范性实验教学中心”;20000㎡医学工程实训大楼投入使用,涵盖工科基础、医学影像技术、智能医学工程3个综合实训平台,口腔医学技术和假肢矫形工程2个生产性教学工场,教学科研仪器设备总值达7800万元;设有2500㎡医养康护综合实训中心,2000㎡眼健康智慧学习中心,500㎡生物发酵工程中心;与美国南加州大学合作共建2000㎡干细胞中心和科研创新中心;筹建2500㎡人体科学智慧学习中心。产教融合、校企合作不断深化先后与东软集团、凯普生物、安图生物、美康生物、翔宇医疗等十余家大型行业龙头企业签订合作协议,推动校企合作向产教融合转变,探索传统医疗行业转型升级和新兴产业发展中人才培养模式改革和技术创新。与翔宇共建康复医疗研发与应用协同创新中心,开展康复医疗设备及技术研发与转移,该项目获2016年度河南省校区合作奖励;与沈阳东软医疗系统有限公司签订深度合作一揽子协议,共建全真实环境的东软医学影像培训中心,建成东软首个影像云地方服务中心;创新行业学院组织架构模式,成立光明眼科学院、康复学院、口腔技术学院三个行业学院;在光明眼科学院开设光靓班,联合企业完成眼科学与健康智慧学习中心建设并获企业50万元投资;围绕生殖与妇幼保健专业集群,与焦作妇幼保健医院合作开展助产学专业联合培养,组建临床儿科学、妇产科学和护理母婴护理班级并开展联合教学;与广东凯普生物科技有限公司、河南省工程技术研究中心合作共建协同创新中心;与驼人集团、翔宇医疗开设跨学科医疗装备班,并联合建设河南省智能医疗设备研发与实训中心;与新郑市人民医院等22家县级医疗单位联合组建河南县域医疗单位合作联盟,开展大数据采集和分析,共享医学教育资源和医疗信息,推动区域健康医疗事业发展。国际化发展迈入新征程2015年,学校获聘请外国专家单位资格认可证书,先后引进美国加州大学戴维斯分校李明文教授,组建辅助生殖医学科研团队;聘请美国南加州大学应其龙教授为干细跑中心首席科学家,开展干细胞转换利用研究;聘请韩国新丘大学崔锡淳、文秀教授,开展口腔医疗技术人才培养改革和高端口腔产品应用性研究。2017年,获批招收外国留学生资质,目前已有66名来自巴基斯坦、印度、印度尼西亚、坦桑尼亚、加纳等“一带一路”沿线国家学生入校学习;2018年,成功加入世界医学院校名录;2019年5月,获批与美国查塔姆大学合作办学项目。“资源引入”与“教育输出”协同发展,对外交流合作工作迈入新征程。成人高等教育全面启动2018年6月,成功获批举办高等学历继续教育资质,是全国独立学院中,第一家具备该项资质的高校。目前共开设护理学、医学检验技术、生物技术、生物医学工程、公共事业管理五个专业。2019年1月,已成功迎来首批学生入校学习。科技创新能力不断提高学校获批为“国家自然科学基金依托单位”,细胞生物学学科获批成为河南省重点培育学科,河南省山楂综合利用工程研究中心获批为省级科研平台、新乡市工程技术研究中心,药物及其关键中间体中心获批为新乡市工程技术研究中心,生育力保存重点实验室获批为新乡市重点实验室。2000㎡全开放科技创新中心平台、生物与基础医学实验平台、干细胞研究中心相继建成。数字化校园建设与现代教育技术发展日臻完善建成网上办事服务大厅、智慧校园APP。以智慧学习工场为核心的现代生命科学学习中心正式启动。25000㎡图书馆投入使用,目前馆藏文献量已达到近80万册,数据库7个。拥有多媒体设备226套、触控一体机72块,并建成省内领先的微课录播室,2017年获批河南省首批在线开放课程。成立智能医学研究院,构建“人工智能+”人才培养新模式,获批新乡市智能医学虚拟重点实验室及新乡市智能VR康复训练系统工程研究中心,心脏VR项目参加河南省高校院所首届博览会并受到中央电视台等多家媒体报道。招生与就创业质量不断向好学校录取分数线逐年提升,连续七年本科批次理科录取线超出河南省控线40分以上,医学及医学相关专业最低录取分数线均高出分数线40分以上,稳居河南省同类院校首位;2018年16个外省录取的最低分数线高于当地省控线5
新乡医学院三全学院 2021-02-01
全任务飞行模拟器系统
全任务飞行模拟器(FFS, Full Flight Simulator)是在地面对飞行员进行飞机操作流程、驾驶技能、特情处置等任务训练的大型装备。是综合性强、技术密集度高的高技术设备,涉及众多技术领域,如建模与仿真技术,计算机技术,自动控制技术,三维图像实时生成技术,宽视场角投影显示技术,全电动六自由度运动平台技术等,是当今众多高技术的集中载体。广泛应用于飞行员训练和各类飞机论证、研制、测试、飞行品质认证全过程。 飞行模拟器是一个复杂的大系统,全任务飞行模拟器由十几个分系统构成。直观上可分为模拟座舱、运动系统、视景系统、计算机系统及教员控制台等五大部分。从总的角度看,飞行模拟器的硬件部分主要充当了人机交互界面和完成计算任务的功能。而仿真软件则是完成飞行仿真的灵魂和核心。 核心技术具有完全的自主知识产权;已形成多种机型的飞行模拟器系列产品,交付用户二十余套。 曾获国家科技进步一等奖1项、部级科技进步一等奖2项、部级科技进步二等奖5项。
北京航空航天大学 2021-04-13
桥梁全寿命经济分析(LCC )研究
北京工业大学 2021-04-14
C50 全高清录播主机
本项目拥有一流的国际联合研发团队,利用领先的视频处理技术,研发了 C50 系列产品,具有高清晰度、低网络带宽消耗、小巧便携、价格低等优势,在课堂、讲演和公开课(慕课)录制方面有巨大的优势,引领常态化精品录播。 
中国科学技术大学 2021-04-14
全光纤太赫兹RCS测量系统
准确测量太赫兹频段目标雷达散射界面(Radar Cross Section,RCS)是开展太赫兹成像和探测等技术研究的基础。利用反射式太赫兹时域光谱系统(THz-TDS)可以实现目标的超宽带RCS参数测量功能。典型基于THz-TDS的RCS测量系统主要由飞秒激光器、太赫兹辐射源、太赫兹探测器、光学延时扫描装置和待测目标转台等组成。
上海理工大学 2023-05-15
全固废新型建筑材料
工业固体废渣的有效处置、生态环境污染的源头治理、新老建筑物的节能降耗、海绵城市建设中的排水蓄水、美好城市建设中的路面装饰及传统建材生产对土地资源的消耗等,是国民经济和社会持续发展迫切需要解决的重大问题。本成果以尾矿(黑色金属尾矿、有色金属尾矿、稀贵金属尾矿和非金属尾矿)、燃料废渣(粉煤灰、煤矸石、石油焦等)、冶炼废渣(钢铁冶金渣和有色金属冶金渣)、建筑垃圾、水处理污泥及工业粉尘等工业固体废渣为主要原料,制备建筑物隔热保温隔声用泡沫陶瓷、海绵城市建设用透水陶瓷、裸露路面及建筑物装饰用陶瓷板等新型建筑材料制品,提供全固废或以工业废渣为主要组成的新型建筑材料的产业化技术与方案。 根据不同尾矿、燃料废渣、冶炼废渣、建筑垃圾、水处理污泥等工业固废的化学组成与物相特点,利用各废渣化学组成间的协同-互补-相克原理,通过组成的科学设计和工艺控制,实现工业废渣的最佳组合、最大化利用和高附加值利用;通过化学键合和物理包埋技术,实现对废渣中可能存在的重金属离子的固溶与固封,使制品不产生二次污染。其中,泡沫陶瓷的固废含量为100wt%,体积密度0.37-0.61g/cm3,气孔率78.3-88.5%,抗压强度2.9-8.1MPa,抗弯强度1.4-4.3MPa;透水陶瓷的固废含量为100wt%,透水系数4.68×10-2cm/s,抗压强度72.3MPa,抗弯强度13.3MPa;陶瓷板的固废含量为100wt%,体积密度1.96~2.01g/cm3,最高抗压强度346.5MPa。 优势:(1)原材料优势:以工业废渣为原料,无需消耗化工原料及矿产与土地资源;(2)技术优势:利用各废渣化学组成间的协同-互补-相克效应及固溶-固封技术,既可实现废渣的最佳组合、最大化利用,又可赋予制品优良的综合性能,还可降低烧结温度与时间,从而减少制备过程的能源消耗与排放。(3)其它优势:与有机泡沫材料相比,无机泡沫材料耐高温,无安全隐患;与免烧结泡沫水泥相比,烧结泡沫陶瓷的强度高,使用可靠性强。
中南大学 2022-12-15
首页 上一页 1 2
  • ...
  • 16 17 18
  • ...
  • 67 68 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1