高等教育领域数字化综合服务平台
云上高博会服务平台
高校科技成果转化对接服务平台
大学生创新创业服务平台
登录
|
注册
|
搜索
搜 索
综合
项目
产品
日期筛选:
一周内
一月内
一年内
不限
单壁碳纳米管和石墨烯的制备及其在能源、光电
器件
和复合材料等方面的应用
1991年发现的碳纳米管(CNT)以及2004年发现的石墨烯(graphene),分别是一维和二维纳米材料的典型代表,被认为是21世纪的战略性材料。 本项目发明了一类新的催化剂和大量制备SWNTs的方法,实现了高质量单壁碳纳米管的宏量制备(图1),纯度达70%以上,并达到了产业化规模(达200公斤/年以上)。 采用机械共混及"原位"聚合等方法,使SWNTs有效地分散于高分子基质中,获得了以环氧树脂、ABS及聚氨酯等为基质材料,电导率达0.2 S/cm、导
南开大学
2021-04-14
中国科大揭示HPT内分泌
轴
中内源肽和口服肽类药物激活促甲状腺激素释放受体的结构基础
促甲状腺激素释放激素(Thyrotropin ReleasingHormone,TRH)是下丘脑分泌的一种三肽激素,刺激垂体前叶释放促甲状腺激素(Thyroid Stimulating Hormone , TSH), TSH刺激甲状腺分泌甲状腺激素,甲状腺激素显著促进婴儿期生长发育,促进骨、骨骼肌、肝脏代谢合成,及增加成年人基础代谢率。
中国科学技术大学
2022-06-02
一种用于船用柴油机无刷双馈
轴
带发电机的励磁控制系统结构
本实用新型涉及公开了一种用于船用柴油机无刷双馈轴带发电机励磁控制系统结构,该船用无刷双馈轴带发电机励磁控制系统结构包括接触器、升压变压器、整流回馈单元、直流补偿单元、逆变单元、操作面板、励磁控制器、AB 相电压传感器、CA 相电压传感器、BC相电压传感器;基于该控制系统结构的控制方法,可以实现船用无刷双馈轴带发电机的起励、恒压控制、恒频控制、欠压保护和过压保护。
华中科技大学
2021-04-14
团队利用单点超精密五
轴
金刚石车床(Nanotech 350FG)开展相关研究,解 决了高精度大尺寸
电泳技术是目前检测 PCR 产物的有效方法。电泳技术主要包括毛细管电泳技 术与平板凝胶电泳技术。毛细管电泳技术虽具有灵敏度高、检测速度快、实验试 剂耗量少等优势,但是其高昂的价格限制了其在实验室的进一步推广。平板凝胶31电泳技术凭借其价格优势成为实验室检测 DNA 最常见的方法。传统凝胶电泳技术 主要包括制胶、进样、电泳、染色及成像五个步骤,所涉及设备主要包括制胶槽、 电泳槽、微波炉,直流电源、摇床及凝胶成像仪等。该方法主要存在以下缺陷:(1)
上海理工大学
2021-01-12
基于谐振频率的硅
微
谐振式加速度计在线温度补偿方法
本发明公开了一种基于谐振频率的硅微谐振式加速度计在线温度补偿方法,在零加速度情况下标定出两谐振梁谐振频率平方和与其谐振频率差的单调变化关系曲线,然后在输入加速度情况下对两谐振梁谐振频率和谐振频率差进行测量,结合先前获得的关系曲线将温度引起的谐振频率差从测量得到的谐振频率差中减去,完成温度补偿工作。本发明提供的硅微谐振式加速度计温度补偿方法,克服了传统直接温度补偿方法中温度场分布的不确定性和热传导延迟给补偿结果带来较大偏差的缺陷,能够实现实时的、高精度的温度补偿。本发明方法的温度补偿成本低,该方案全部基于FPGA实现,不需要额外增加传感器和引入其它设备,仅利用已有电路器件即可实现。
东南大学
2021-04-11
平板气升环流式养藻光合反应器及其进行
微
藻养殖的方法
本发明涉及生物质能利用技术,旨在提供平板气升环流式养藻光合反应器及其进行微藻养殖的方法。该平板气升环流式养藻光合反应器为箱型结构,箱型结构的顶部有一个直径为3cm的开孔,内部通过隔板分隔成三块区域,分别为中心流上升区和两个两侧流下降区;该进行微藻养殖的方法包括步骤:接种微藻液体至平板气升环流式养藻光合反应器中,在平板气升环流式养藻光合反应器的一侧设置光源,用气泵向平板气升环流式养藻光合反应器中送入的空气或工业烟气。本发明能形成一个旋转的交替更迭的大涡流动,加强了气液搅拌和物质传递,能够明显改善藻液流场和促进闪光效应,有利于提高微藻光合作用和生物质产量。
浙江大学
2021-04-11
计及交直流
微
网应对灾害事件弹性能力的鲁棒调度方法
本发明公开了一种计及交直流微网应对灾害事件弹性能力的鲁棒调度方法,包括以下步骤:步骤10)获取不确定性预测参数,构造交直流微网中的不确定性集;步骤20)基于步骤10)构造的不确定性集,线性化可再生能源发电机组的出力约束;步骤30)获取交直流微网中各设备的运行成本系数和运行限值,基于步骤10)和步骤20)建立灾害事件下交直流微网的鲁棒调度模型;步骤40)求解步骤30)建立的鲁棒调度问题:利用嵌套型列约束生成算法迭代求解该鲁棒模型,获得交直流微网在灾害事件发生情况下的鲁棒运行计划。该方法提高交直流微网在应对灾害事件上的弹性能力,为制定特殊天气情况下交直流微网的运行计划提供重要指导。
东南大学
2021-04-11
一种交直流混联
微
网的随机鲁棒耦合型优化调度方法
本发明公开了一种交直流混联微网的随机鲁棒耦合型优化调度方法,包括以下步骤:步骤10)获取交直流混联微网的源荷功率预测数据,构造随机不确定性集;步骤20)建立随机鲁棒耦合型优化调度模型的目标函数;步骤30)建立随机鲁棒耦合型优化调度模型的约束条件;步骤40)求解随机鲁棒耦合型优化调度问题:利用列约束生成算法求解随机鲁棒耦合型优化问题,获得交直流混联微网的随机鲁棒协调运行计划。该方法考虑到传统鲁棒优化调度模型保守性强的缺点,将随机优化和鲁棒优化相结合,在保证系统鲁棒性的基础上能够提高交直流混联微网的运行经济性,为制定交直流混联微网的运行方式提供指导和帮助。
东南大学
2021-04-11
一款可通过光合作用靶向治疗肿瘤的
微
纳机器人
微纳机器人指的是尺度介于微纳米级别,可以对微纳空间进行精细操作的机器人。由于其具有灵活运动、精确靶向、药物运输等能力,在疾病诊断治疗、靶向递送、无创手术等生物医学领域具有广阔的应用前景。然而现阶段针对微纳机器人的有关研究大多聚焦在体外,在体内治疗应用的更多预期功能仍然具有极大的挑战性。 浙江大学医学院附属第二医院/转化医学研究院周民研究员团队研制出一款微纳机器人,通过以微藻作为活体支架,“穿上”磁性涂层外衣,靶向输送至肿瘤组织,成功改善肿瘤乏氧微环境并有效实现磁共振/荧光/光声三模态医学影像导航下的肿瘤诊断与治疗。 这项研究被刊登在材料领域著名期刊《先进功能材料》(Advanced Functional Materials),并被遴选为当期封面。论文的第一作者是浙江大学转化医学研究院交叉学科直博生钟丹妮,论文通讯作者为周民研究员。 光合作用解决供氧不足 在肿瘤治疗中,为何需要微纳机器人靶向提供氧气呢? 这是因为肿瘤细胞在快速增殖中消耗了大量的氧气,导致肿瘤组织内部存在缺氧微环境,这成为众多肿瘤治疗方法出现耐受现象的重要原因之一。一般临床肿瘤治疗采用的放疗和光动力治疗中,患者通过高压氧仓吸氧来解决肿瘤内部氧气不足的问题。但这种方法往往收效甚微,并不能达到靶向供氧到肿瘤部位,难以提高肿瘤治疗效果。 螺旋藻,一种生活中常见的微藻,作为水生植物能够通过光合作用产生氧气。那么如何将该微藻送进肿瘤?课题组提出将超顺磁性的四氧化三铁纳米颗粒通过浸涂工艺,均匀涂层至微藻表面。磁性工程化的微藻能够在外部磁场控制下,能够定向运动至肿瘤。 磁性工程化螺旋藻,在磁铁控制下能定向移动 “研究的创新性在于无机和有机的微纳体,选择性把药物输送到肿瘤缺氧部位。”周民介绍,他们所研制的微纳机器人是一种光合生物杂交体系统,这个系统既保持了微藻高效的产氧活性,还兼有四氧化三铁纳米颗粒的定向磁驱能力。 微纳机器人通过光合作用提高肿瘤氧气浓度 在具体治疗中,通过体外交变磁场将微纳机器人靶向运送并积累至肿瘤,通过体外光照,由光合作用原位产生氧气来减轻肿瘤内部乏氧程度,从而提高放射疗法的效率。“在小鼠的原位乳腺癌模型中,经增强的联合治疗展现了明显的肿瘤生长抑制作用。” 增强放疗/光动力协同治疗抑制肿瘤生长并可降解 叶绿素一面照出肿瘤变化的镜子 光合生物杂交微纳泳体系统不仅对于放疗具有积极作用,在经过射线处理后释放的叶绿素能作为光敏剂,进而产生具有细胞毒性的活性氧来杀死肿瘤细胞,实现协同光动力治疗。“正常的光动力治疗需要氧气和活性氧才能顺利开展,目前的微纳机器人能够很好地解决这两个需求。” 此外,微藻中含有的大量叶绿素,也具有的天然荧光和光声成像功能,可以无创性地监测肿瘤治疗情况和肿瘤微环境变化。“药物遇到荧光,就能够表达出来。叶绿素是一面镜子能够找出来它。” 基于叶绿素的治疗及成像功能
浙江大学
2021-04-10
解吸池及分子印迹搅拌棒
微
萃取-高效液相色谱在线联用装置
本技术成果研发了一种微波辅助提取-高速逆流色谱联用方法及其装置。首先采用微波辅助提取模式 本技术成果研发了一种适于装载分子印迹搅拌棒的解吸池,包括一上部池体及一下部池体。上部池体 提取物料;然后提取液浓缩预分离;最后通过高速逆流色谱纯化制备得到目标组分或分析天然产物提取液 的底部连接于下部池体的顶部且两者内部形成一上下贯通的解吸腔,上部池体顶部设有一液流出口,下部 中的目标组分;上述步骤通过接口及转换控制实现微波辅助提取、分离、纯化、高速逆流色谱制备或分析 池体下部圆周对称地均布有三个液流入口,液流出口及液流入口与所述解吸腔连通;还包括一分子印迹搅 于一体,可直接从天然产物中提取得到毫克级高纯度对照品,具有快速高效、高选择性的特点,实现天然 拌棒,放置于所述解吸腔中;还包括一密封圈,密封所述上部池体及下部池体的连接部。上述解吸池配以 产物快速高效的在线提取分离、纯化制备或分析。“天然物质提取分离纯化的实验室制备微波装置”集微 微量注射泵可实现对分子印迹搅拌棒的高效流动加热解吸。另外在该解吸池的基础上,通过与高效液相色 波辅助提取快速高效分离的优势和高速逆流色谱高效纯化、制备
中山大学
2021-04-10
首页
上一页
1
2
...
103
104
105
...
111
112
下一页
尾页
热搜推荐:
1
高校实验室分级分类管理平台
2
云上展厅已成功吸引1万余家企业入驻!
3
第62届高博会圆满落幕,明年春天相约春城!