高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
基于分段式多元线性回归的个性化头相关传递函数生成系统及方法
本发明提供了一种基于分段式多元线性回归的个性化头相关传递函数生成系统及方法。生成函数时, 先对样本头相关传递函数信息库中的头相关脉冲响应数据进行时延移除、冗余信息精简、数据分组处理, 再对分组数据同样本库中的人体测量参数数据进行多元线性回归分析,建立个性化模型。进行个性化计 算时,通过录入个性化对象的人体测量参数信息,经过个性化模型运算得到对应于各方位的头相关脉冲 响应数据,通过对人体测量参数进行校准微调最终生成适用于确定对象的个性化头相关传递
武汉大学 2021-04-14
一种垃圾箱和基于网络平台的垃圾分类收集系统及方法
其他成果/n一种垃圾箱,包括箱体和盖体,所述箱体内设有垃圾投放仓和位于所述垃圾投放仓下端的与其连通的多个垃圾分类存储箱,所述垃圾投放仓内设有红外线扫描纠错器,所述垃圾投放仓的上端设有自动开合门,所述盖体上设有与垃圾投放仓位置相对应的自动开合门,所述垃圾投放仓下端通过自动投放门与所述多个垃圾分类存储箱相连通,所述盖体上设有云计算反馈激励模块和位于所述自动开合门上方的垃圾分类扫描器。本发明一种垃圾箱是基于网络平台的并具有自动扫描智能分类的功能,云计算反馈模块与物业系统和市政中心系统连接,为物业和市政中心
武汉轻工大学 2021-01-12
城市公用事业特许经营权竞标机制分类设计与管制政策研究
浙江财经大学王岭副研究员编著的《城市公用事业特许经营权竞标机制分类设计与管制政策研究》2017年12月由中国社会科学出版社出版,获2019年“浙江省第二十届哲学社会科学优秀成果奖”三等奖(基础理论研究类)。 该书是国家自然科学基金青年项目“城市公用事业特许经营权竞标机制分类设计与管制政策研究”(批准号:71303208)的最终研究成果。中国城市公用事业长期游历于市场经济体制之外,这不仅直接影响着城市公用事业产品供给的可持续性,而且也直接或间接地影响了整个城市功能的有效发挥,乃至影响了政府职能的转变和市场化进程的有序推进。在增加供给与提升效率的双重目标下,中国政府顺势而为,提出了深化城市公用事业市场化改革的重要举措,这需要创新政府管制体制,发挥市场竞争机制,实现特许经营权竞标的有效性。为此,构建可竞争的市场机制已然成为城市公用事业市场化改革的核心内容,特许经营是市场化改革的重要制度,目前已经遍地开花,但在城市公用事业特许经营权竞标过程中依然存在着低价中标、固定回报、变相固定回报等一些“伪PPP”问题,这在一定程度上背离了通过特许经营模式提高运营企业效率的初衷。同时,现有城市公用事业特许经营项目的竞标机制往往参照工程项目,忽视了城市公用事业的同质性与异质性特征,从而限制了特许经营权竞标机制的适用范围。因此,在深化城市公用事业市场化改革的背景下,如何分类设计城市公用事业特许经营权项目竞标机制,制定与之相适应的管制政策,实现城市公用事业特许经营权的有效分配,促进城市公用事业运行效率和服务水平的提升,已然成为中国理论研究和实际应用过程中最为关注的重要议题之一。
浙江财经大学 2021-04-30
一种基于关联分析与关联分类的蛋白质二级结构预测技术
发明公开了一种基于关联分析与关联分类的蛋白质二级结构预测技术,以双库协同机制为基础,将KDD*过程模型引入蛋白质二级结构预测问题中,KAAPRO方法以数据挖掘(知识发现)为主体,采用基于KDD*过程模型Maradbcm算法以及关联规则分类D-CBA方法。KAAPRO方法所取得关联规则在一定程度上揭示了氨基酸物化属性对蛋白质二级结构的影响关系,从而提高了预测的精度。其中Maradbcm算法挖掘意外规则的特性对纯度较高的α蛋白质库与β蛋白质库进行关联规则的挖掘,由此获得的挖掘结果是精化的规则。D-CBA关联分类方法使用可信度与支持度的测度作为一个复合型度量来进行蛋白质关联分类。在保证预测精度的同时,为生物学家对二级结构进一步分析提供了依据。
北京科技大学 2021-04-11
一种基于果蝇算法优化广义回归神经网络算法的茶叶储存时间分类方法
项目成果/简介:本发明涉及一种基于果蝇算法优化广义回归神经网络算法的茶叶储存时间分类方法,旨在通过改进的广义回归神经网络解决茶叶储存时间分类问题,属于茶叶储存时间分类领域.其原理利用电子鼻传感器模拟人感官品评的功能和特征,采集不同时间不同传感器的特征值,构建样本集.利用果蝇算法优化广义回归神经网络,获得广义神经网络的平滑因子,进而构建毛峰茶叶储存时间的FOAGRNN分类模型和方法.本发明的有益效果在于将果蝇算法优化广义回归神经网络算法应用于毛峰茶叶数据中,提高预测毛峰茶叶储存时间分类的效率和准确度,为消费者提供茶叶储存时间分类的有效方法.
安徽农业大学 2021-04-10
一种基于选择性隐朴素贝叶斯分类器的网络故障诊断方法
本发明公开了一种基于选择性隐朴素贝叶斯分类器的网络故障 诊断方法,包括:(1)从网络历史数据库中获取历史数据,包括症状变 量集以及故障类变量集;(2)构建选择性隐朴素贝叶斯分类器预测模型, 根据症状变量集中的每个症状变量确定对应的最相关症状变量集合; (3)所述选择性隐朴素贝叶斯分类器通过训练历史数据自动学习到分类 器参数;(4)进行故障诊断时,对测试数据利用上述选择性隐朴素贝叶 斯分类器进行估计得到对应最终的故障诊断结果。通过执行本发明中的网络故障诊断方法,有效解决了现有网络故障诊断中运算复杂度高、 网络诊断结果偏差大的问题,显著提高了网络诊断的准确性,在进一 步降低运算复杂度的同时,能够保持较好的学习能力及容错特性。
华中科技大学 2021-04-11
一种基于果蝇算法优化广义回归神经网络算法的茶叶储存时间分类方法
本发明涉及一种基于果蝇算法优化广义回归神经网络算法的茶叶储存时间分类方法,旨在通过改进的广义回归神经网络解决茶叶储存时间分类问题,属于茶叶储存时间分类领域.其原理利用电子鼻传感器模拟人感官品评的功能和特征,采集不同时间不同传感器的特征值,构建样本集.利用果蝇算法优化广义回归神经网络,获得广义神经网络的平滑因子,进而构建毛峰茶叶储存时间的FOAGRNN分类模型和方法.本发明的有益效果在于将果蝇算法优化广义回归神经网络算法应用于毛峰茶叶数据中,提高预测毛峰茶叶储存时间分类的效率和准确度,为消费者提供茶叶储存时间分类的有效方法.
安徽农业大学 2021-04-29
教育部关于深入推进学术学位与专业学位研究生教育分类发展的意见
坚持两类学位同等重要
教育部 2023-12-19
一种通过scout ESI和CNN解码EEG运动想象四分类任务的新方法
导读东北电力大学和长春理工大学研究团队开发并实现一种结合脑电图源成像(ESI)技术和卷积神经网络(CNN)的新方法,以对运动想象(MI)任务进行分类。ESI技术采用边界元法(BEM)和加权最小范数估计(WMNE)分别解决EEG的正向和逆向问题。然后在运动皮层中创建十个scout来选择感兴趣的区域(ROI)。研究者使用Morlet小波方法从scout的时间序列中提取特征。最后,使用CNN对MI任务进行分类。实验结果:在Physionet数据库上的整体平均准确率达到94.5%,分别对左拳头、右拳头、双拳和双脚的单个准确率达到95.3%、93.3%、93.6%、96%,采用十倍交叉验证进行验证。研究人员表示,他们的研究成果与最先进的MI分类方法的结果相比,总体分类增加了14.4%。研究者为验证方法的有效性,加入了4个新的受试者进行验证,发现总体平均准确率为92.5%。此外,全局分类器适应单一对象,整体平均准确率提高到94.54%。研究者表示,他们提出的结合scout ESI和CNN的方法,提高了脑电解码四类MI任务的BCI性能。系统框架图1 系统框架图系统框架如图1所示。原始数据来自国际10-10系统的64个电极(不包括Nz、F9、F10、FT9、FT10、A1、A2、TP9、TP10、P9和P10电极),并以每秒160个样本的速度采集。根据国际10-10系统从64个通道采集原始脑电图,并使用BCI2000系统进行记录。记录的数据被分为四个独立MI任务包括左拳MI,右拳MI,双拳MI和双脚MI。首先,由于ERD在执行运动想象时在alpha和beta中不同,因此使用FIR滤波器对EEG进行了8 Hz至30 Hz的带通滤波。然后,通过计算包含正问题和逆问题的源,将传感器空间的活动转化为源空间的活动。接下来,创建scout并提取特征。研究者在运动皮层中创建了10个scout,因为我们只关心与运动相关的活动。十个scout中的每一个都代表了可用源空间中的一个感兴趣的区域(ROI),并且是定义在皮层表面或头部体积上的偶极子的子集。左脑的scout称为L1、L2、L3、L4、L5,右脑的scout称为R1、R2、R3、R4、R5。利用JTFA从10个scout的源时间序列中提取特征。最后,利用CNN对时频图进行分离并进行分类。实验在实验中,研究人员仅使用了随机选择的十个受试者的MI trail (S5,S6,S7,S8,S9,S10,S11,S12,S13,S14)。这里用于分析的数据集包含每个受试者84次试验,每一类包含21次试验。在记录64通道脑电图时,受试者执行了不同的运动想象任务。每个受试者针对以下四个任务中的每一个执行了3轮21试验:当目标出现在屏幕左侧时,受试者想象打开和合上相应的拳头,直到目标消失。然后受试者放松。当目标出现在屏幕的右侧时,受试者想象打开和合上相应的拳头,直到目标消失。然后受试者放松。当目标出现在屏幕顶部时,受试者想象打开和合上双手的拳头,直到目标消失。然后受试者放松。当目标出现在屏幕底部时,目标会想象双脚张开和合拢,直到目标消失。然后受试者放松。为了统一数据维数,研究者选择了4s的数据,因为每次想象任务的执行时间都在4s左右。此外,脑电图任务是分开的,研究人员在实验中将左拳,右拳,双拳和双脚MI任务分别称为T1,T2,T3和T4。图2 scout命名左右运动想象的scout分别命名为L1、L2、L3、L4、L5、R1、R2、R3、R4、R5,如图2所示。10个scout每一个都被扩展到40个顶点,每个顶点只有一个源。L1区域对应40个信号,其他scout也一样。在计算了来源后,研究者在运动皮层中创建了十个scout,如图3所示。图3 创建10个scout使用ESI计算十个受试者(S5、S6、S7、S8、S9、S10、S11、S12、S13、S14)每次试验的四个任务(T1、T2、T3、T4)的源。对于这四项任务中的每一项,每个受试者每次都要进行7次测试(#1,#2,#3,#4,#5,#6,#7)。展示了第一个步的10个被试的10个scout的4项任务的来源。然后提取10个scout的时间序列进行进一步分析。特征提取在计算源之后,研究人员在运动皮层中创建了包含40个源的10个scout,并提取了scout的时间序列。如图4所示为提取R5 scout时间序列作为示例。图的右边显示了R5 scout的时间序列。本文利用小波变换从scout时间序列中提取特征。图4 提取R5 scout时间序列作为示例在这项研究中,研究者提出利用CNN来解决运动想象任务分类的问题。该模型基于Schirrmeister等提出的Deep ConvNet架构,该网络模型由一个六层卷积网络组成,其中两个最大池层和三个全连接层,如图5所示。图5对于Physionet数据库,研究者首先采用Deep ConvNet架构,包括四个卷积层、四个最大池层和一个全连接层。在实验中,研究者依据经验使用两个最大池化层。并尝试了不同数量的卷积层和完全连接层。时频图利用Morlet小波方法得到了scout的特征。对于每个任务,R5 scout的时频图如图6所示。包含时间和频率互补的时频分析方法提供了时域和频域的联合分布信息,清晰地描述了信号频率与时间的关系。图6 R5 scout的时频图显然,只有部分时频映射是红色的,表明每个任务只对特定的频率和时间敏感。由于图的数量比较大,研究者使用CNN来选择和学习这些图中最基本的特征。研究人员随机选择了几个样本,并将一些特征图可视化,作为MI任务的学习表示,如图7所示。图7为了获得有效的结果,将数据集分为90%作为训练集,其余10%作为测试集。首先,将十个受试者的数据集(总共19320个样本)分为17388个样本以训练所提出的CNN模型,以及1932个样本以验证模型的有效性。在实验中,研究者还选择了另外四个受试者的数据集以增加数据集的规模(27048个样本),其中24343个样本是训练集,其他样本是测试集。在选定的scout上对所提出的CNN架构进行了十次训练和测试,以验证所提出模型的鲁棒性。图8(a)显示了10个scout中每个的全局平均精度。图8 统计结果R5的全局平均精度最高,达到94.5%,而L2的全局平均精度最低,为91.3%。对应L1、L3、L4、L5、R1、R2、R3、R4的整体准确率分别为92.4%、92.5%、93.6%、91.9%、93.0%、91.8%、92.1%、92.6%。所有scout的总体精度均在91%以上,标准差均在0.20%以下。图8(b)显示了十个scout中每个scout四个MI任务的组级统计结果及其标准差。一般来说,R5表现的要比其他的好,而L2在迭代2000中表现最差。标准差较小,说明这些精度更接近平均值且稳定。图9 统计结果图9(a)显示了带有标准差的混淆矩阵,说明了group level分类结果。T1、T2、T3和T4的全局平均精度峰值分别为95.3%、93.3%、93.6%和96.0%。R5 scout的四个MI任务中的每一个都如图9(b)所示。通过改变训练集和测试集顺序的10次试验,确定了scoutR5的性能,结果如图10(a)和(b)所示。在10次试验中,scout R5的T1、T2、T3、T4的平均准确率分别为93.3%、93.8%、94.2%、94.1%。换句话说,四个任务中每一个的平均准确率都超过了93%。全局平均准确率为93.7%。10次试验结果表明,该方法对scout R5的分类效果较好。从以上结果可以清楚地看出,R5 scout在四种MI任务的分类中扮演着最重要的角色。因此,选择R5对四个MI任务进行分类。图 10图11. (a)是不同模型的全局平均准确性的比较。可以发现,该研究提出的模型可以达到最大的精度。从图11. (b)不同模型的ROC曲线可以看出提出的模型比其他模型表现更好。©不同模型T1上的精度比较。(d)不同模型T2的精度比较。(e)不同模型T3的精度比较。(f)不同型号T4的精度比较。图11 不同模型的精度比较结论东北电力大学和长春理工大学研究团队开发并实现一种结合脑电图源成像(ESI)技术和卷积神经网络(CNN)的新方法。该方法可以对运动想象(MI)任务进行分类。实验结果表明,他们的研究成果与最先进的MI分类方法的结果相比,总体分类增加了14.4%。研究者加入了4个新的受试者进行验证来验证方法的有效性。研究者表示,他们提出的结合scout ESI和CNN的方法,提高了脑电解码四类MI任务的BCI性能。论文信息:A novel approach of decoding EEG four-class motor imagery tasks via scout ESI and CNN
东北电力大学 2021-04-10
教育部关于印发《高等学校实验室安全分级分类管理办法(试行)》的通知
本办法中的实验室,是指隶属于高校从事教学、科研等实验、实训活动的场所及其所属设施,以房间为管理单元。中试性质和工业化放大性质的试验场所及其所属设施不在本办法管理范围内,高校如涉及相关场所应根据相关法律法规及标准规范制定相关管理办法。
教育部 2024-04-22
首页 上一页 1 2
  • ...
  • 9 10 11 12 13 14 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1