高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
UVRaman100紫外共振拉曼光谱系统
产品详细介绍UVRaman100紫外共振拉曼光谱系统        新一代紫外共振拉曼光谱仪    
北京卓立汉光仪器有限公司 2021-08-23
八灯座单火焰原子吸收光谱仪
1.产品介绍AA-1800DL型原子吸收光谱仪是由行业的专家和国内知名高校联手研发完成,拥有几十年光谱仪器的研发和应用经验。该产品包括火焰及氢化物发生系统,可配置多种附件,灵活的配置方案可满足不同层次客户的需求。全自动多功能AA-1800型原子吸收光谱仪可进行复杂的样品分析,多种分析方法可自动切换,做到无人全自动分析。AA-1800DL型原子吸收光谱仪广泛应用于科研、质检、疾控、环保、冶金、农林、化工等行业,创新的软、硬件设计确保样品分析的准确性、安全性、易用性,仪器维护简单便捷。2.性能特点全反射消色差光学系统色散率为1800条/毫米刻线大面积光栅,新型自准直单色器,所有镜片均是石英镀膜,宽广的检测范围和光学稳定性确保了分析的精度、闪耀波长230nm光栅分光系统。八灯灯座一灯工作,最多可以七灯预热,节省了换灯和预热时间,使元素测量更加快捷方便。全自动化除主机电源开关外,仪器全部功能通过计算机监测与控制。背景校正系统具备氘灯与自吸收两种背景校正模式,背景信号1A时,扣背景能力60倍以上。自主知识产权,功能完善,性能强大的分析软件人性化的操作界面,让您的操作易如反掌,可切换中英文Windows风格软件界面,全自动定性、定量分析,自动计算元素含量,自动生成测试报告。3.火焰系统高分子雾化室高分子材料抗腐蚀雾化室,耐酸碱,包括氢氟酸,无论是有机或是无机溶液都能得到较好的灵敏度和稳定性;钛燃烧器钛燃烧器,可选配50mm和100mm燃烧器,空冷预混合型,耐腐蚀,耐高盐,大幅度提高火焰的效率和火焰分析的准确度;高精度防堵塞雾化器高效型雾化器,雾化效率高,维护更换方便。质量流量控制器实现乙炔流量控制质量流量控制器精确控制乙炔流量,精度达1ml/min,并对流量进行动态监测,使用方便,安全可靠。更多的安全保护措施,使样品分析更加安全可靠乙炔泄露监测;乙炔压力监视;空气压力监视;燃烧头状态监视;火焰状态监视;水封状态监视4.数据处理测量方式 : 火焰法、氢化物-原子吸收法 、自吸法、扣背景浓度计算方式 : 标准曲线法(1~3次曲线),自动拟合,标准加入法  重复测量次数 : 1-99次、计算平均值、给出标准偏差和相对标准偏差  结果打印 : 参数打印,数据结果打印,图形打印,可导出WORD、EXCEL文档
上海美析仪器有限公司 2021-12-16
MXY8301 LED/LD光谱分布测试仪
一、产品介绍         “MXY8301 LED/LD光谱分布测试仪”是一款能够探测与分析各种光源在可见谱区范围内分布的“CCD快速光谱仪”,它的探测器是线阵CCD多通道探测器,能够探测各种颜色LED发光管和其他发光体的光谱分布。 由以下几部分构成:由狭缝、分光光栅、凹面镜和线阵CCD光谱探测器等部件构成; 狭缝:仪器信号光输入口为可调缝宽的狭缝(缝宽可调); 被测LED安装装置:用来安装被测LED等光源; 被测LD安装装置:用来安装被测LD光源; 衍射光栅:采用600lp/mm的衍射光栅对入射光进行分光; 凹面镜:将分出的发射光谱汇聚到线阵CCD像敏阵列上; 光谱探测器:用线阵CCD传感器为探测器,以便同步获得更多的光谱谱线; 数据采集:仪器采用12位A/D数据采集系统;以便获得更高的“强度”分辨率; 接口方式:采用0接口方式与计算机连接; 二、教学目的 1、能够同步快速探测可见光范围的多通道光谱,并对谱线进行分析; 2、进行“LED光谱分布的测量实验”,学习光谱探测原理与光谱分析方法; 3、进行“LED发光光谱半宽度的测量实验”认识LED发光光谱特性和测量方法; 4、利用设备提供的“SDK”软件开发包进行课程设计与毕业设计; 三、实验内容 1、测试各种颜色LED的光谱分布; 2、测试LD半导体激光器的光谱分布; 3、测试其他光的光谱分布;
天津梦祥原科技有限公司 2021-12-17
AE8600E 光谱分析仪
AE8600E是天津德力仪器设备有限公司最新推出的一种用于光纤信号光谱分析的衍射光栅光谱分析仪,工作于600至1700nm波长范围内,最大分辨率可达20pm,最高测量功率+20dBm,功率灵敏度低至-90dBm。AE8600E丰富的专业APP应用,可用于半导体激光器(DFB、FP)光谱特征测量、WDM系统测试、EDFA系统参数测试、透过率和漂移测试。AE8600优越的稳定性和可靠性,极快速的光谱扫描速度,开放的数据输出,可帮助您完美应对来自光谱测试的各种挑战。
天津德力仪器设备有限公司 2022-06-06
WDS-3 组合式光栅光谱仪
       WDS-3 组合式光栅光谱仪是将入射的复合光变成单色光射出,再通过光电采集送入计算机进行数据分析。产品主要用于大学物理实验教学和各科研单位作光谱分析之用。 可开设以下实验: 了解光栅光谱仪的工作原理及应用。 掌握利用光栅光谱仪进行测量的技术,测绘不同物质的光谱图。 可选加样品池进行的样品透过率测量。
天津市拓普仪器有限公司 2022-07-12
TP-DSA1 自组式光栅光谱仪
      TP-DSA1 自组式光谱仪依照实验光路图分析仪器的结构,了解基本原理,并且在课程中,学生通过自主设计和调试,完成一台紫外可见分光光度计的搭建、紫外可见光谱的测量以及对于实际样品的分析平台的建立。 主要技术特点: 光源:配置了氘灯、溴钨灯,可选配低压钠灯、低压汞灯。 探测器:线阵CCD接收器。 结构:采用经典C-T结构,所有光学元件(光栅、凸透镜、球面反射镜等)可拆装,自主搭建,升级空间大。 性能:波长精度高、单色性好、杂散光低。 软件功能:设备联机、采集模式(动态采集、静态采集、背景采集)、横纵坐标扩展、峰值标注等。  
天津市拓普仪器有限公司 2022-07-12
充填采矿灾变预测与防治关键技术及应用
针对充填采矿灾变预测与防治的关键问题开展研发,本成果主要技术内容如下:(1)系统研究了充填体破坏失稳声发射预测技术,开辟了用声发射预测充填破坏失稳的新途径;(2)开发了胶结充填过程控制成套技术,提出并成功实施不良地质体超前护帮充填技术等。本技术成熟可靠,适用于充填法开采的金属矿山,已经在江西等省的 9 家矿山推广应用,累计取得产生超过 3 亿元的经济效益和显著的社会效益,并荣获 2011 年江西省科技进步二等奖。 
江西理工大学 2021-05-04
新冠肺炎疫情的状态评估和模拟预测研究
在2020年抗击COVID-19疫情斗争中,北京航空航天大学经济管理学院王惠文教授及团队结合2003年所做非典疫情的状态评估和预测建模研究基础,密切关注在疫情防控中存在的问题。自1月23日起,通过各种渠道相继提交了20多个信息和提案,例如:加强对密切接触者实行隔离筛查、避免新冠肺炎疫情在医院内扩散、关注医务人员的轮岗休整、加强对全国各地区疫情监控与预警工作,等等。团队收集和分析了COVID-19的公报数据,采用统计分析方法对新冠肺炎疫情的传播规律进行了预测与分析,对全国(除湖北)各地区的抗疫阶段做出判断和预测,提出了疫情防控全过程的阶段划分方法,并提交了7篇研究报告。王惠文教授接受《中国经济时报》专访,发表文章《各地应分期分批有序恢复社会经济活动》,并被《今日头条》等网络媒体转载;民建市委网站头版刊登了她的文章《COVID-19疫情发展的状态评估与预测分析》,并报道了《数据会说话:王惠文:疫情发展的状态评估与预测研究》;民建中央网站也专题报道了《北京会员王惠文:用数据打赢疫情防控战》。
北京航空航天大学 2021-04-10
基于深度回声状态网络的目的地预测方法
本发明公开了一种基于深度回声状态网络的目的地预测方法,属于轨迹目的地预测技术领域。
电子科技大学 2021-04-10
预测固体电解质界面的原子模拟软件
本技术提出了基于多尺度理论模拟结合深度机器学习的一整套解决方案,即利用先进多尺度模拟方法精准解析SEI原子结构,建立新一代SEI模型,阐明SEI结构和形成机制,完整构建SEI与电池性能之间的内在联系,定向设计符合不同商用条件的新型电解液配方,为开发新一代高能量密度电池提供可能。 一、项目分类 显著效益成果转化 二、技术分析 随着智能手机、笔记本电脑等消费电子产品的快速发展,锂离子电池(Lithium Ion Battery, 简写为LIB)已经成为最成功的电化学储能设备之一,并从根本上影响并改变了人们的日常生活方式。随着制造工艺的逐步成熟,LIB的能量密度已经接近其理论极限。另一方面,可移动电子设备的快速普及和汽车电动化的蓬勃发展也不断要求开发具有更高能量密度的充电电池以满足实际使用的需求,而最先进的LIB依然无法完全满足上述需求。因此,寻找更高能量比的锂电池电极材料,加快下一代新型锂电池关键技术的相关研究,已成为制约锂电池技术产业发展进步的关键问题。锂金属电池的能量密度虽足以达到下一代电动车的要求,但其自身的稳定性仍令人担忧,这主要是因为Li金属的反应活性过高,其几乎可与所有的电解液均能自发地发生化学反应。在电池的运行过程中,Li电极和电解液之间通过自发化学反应和电化学反应导致了固体电解质界面(solid electrolyte interphase,SEI)的形成。当所形成的SEI结构不均匀时会诱发电池体积膨胀,此外,充放电过程中锂的不均匀沉积会导致锂枝晶的形成,锂枝晶的不规则生长会刺穿SEI,导致SEI膜发生破裂,并产生死锂,降低锂金属电池库伦效率;更严重的是,锂枝晶的不断生长会刺穿隔膜,造成电池内部的短路,导致火灾和爆炸等安全事故,大大缩短了电池的使用寿命,严重阻碍了其大规模商业化发展。因此,SEI对LMB的性能具有至关重要的影响。良好且稳定的SEI可以阻止(或者大幅度减缓)负极界面上反应的持续发生,起到保护Li电极的作用。针对下一代高稳定性锂金属电池设计中存在的关键问题,结合国际研究进展与本团队前期研究基础,我们提出了基于多尺度理论模拟结合深度机器学习的一整套解决方案,即利用先进多尺度模拟方法精准解析SEI原子结构,建立新一代SEI模型,阐明SEI结构和形成机制,完整构建SEI与电池性能之间的内在联系,定向设计符合不同商用条件的新型电解液配方,为开发新一代高能量密度电池提供可能。本方案已形成完整的工作流,相关自动化软件已开发完成并交付使用,且具有完全的自主知识产权,可用于国内外上游电池生产研发企业积累原始电池性能数据,大范围筛选有效电解液组分,指导下一代高能量密度锂电池研制。 我们的技术优势与创新主要表现在: 1)首次在电池体系中实现了QM与MM的混合模拟与混合加速; 2)在电池体系模拟中实现了开放电子体系对电化学反应的热力学和动力学预测; 3)在保证精度的前提下,实现了在纳米尺度上对真实的实验SEI结构直接模拟; 4)通过耦合深度机器学习,实现了电解液组分大范围筛选与性能优化。
苏州大学 2022-08-15
首页 上一页 1 2
  • ...
  • 15 16 17
  • ...
  • 79 80 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1