高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
32003分子结构模型
宁波华茂文教股份有限公司 2021-08-23
模拟气体分子热运动演示仪
适用于高中物理新课程《分子动理论》中有关分子热运动、布朗运动、分子动能、气体温度的微观意义、气体压强的微观意义、气体实验定律微观解释等实验教学。 规格尺寸:120mm*200mm*460mm。 仪器由底座(内含高速直流电机、曲轴联动机构、调速电路)、电源适配器、支架、刻度标尺、圆管、活动活塞、压杆、配重块、小钢珠、小泡沫球等组成。 底座和支架采用金属冷轧板,表面磷化喷涂。 压杆采用直径3mm轻质空心管,下端连接塑料薄圆片,上端套有橡皮圈(用于搁置亚克力片)。 小钢珠的直径为2.5mm,用于模拟气体分子。 配重块为4片等质量的亚克力片,每片质量约等于压杆的质量。 底座面板上安装有带电源指示灯的金属按钮开关,用于调节电机转速的调速旋钮。 供电:DC12V/2A。
宁波华茂文教股份有限公司 2021-08-23
一种电力线通信系统的噪声预测方法
成果描述:本发明申请要解决的问题是,改进预测技术,提高预测准确度。本专利利用高阶马尔科夫模型的原理提出HM-gMTD模型的一种改进,即高阶HM-gMTD模型,并通过EM算法给出相应的参数估计方法和相应的计算方法,并能够快速进行参数估计,以提高模型预测的准确度。市场前景分析:预测模型的发展在人类的经济生活方面发挥着重要的作用,尤其是马尔科夫模型,几乎在各个领域都有着非常广泛的应用。本发明着重混合转移分布模型与高阶隐马尔科夫模型的巧妙结合,构造出高阶HM-gMTD模型,然后运用EM算法,对新模型实现了主要参数的求解。最后为了衡量一个模型的好坏和对不同的模型进行比较,我们选择准则函数。模型比较的最佳准则函数,既考虑到模型对原始数据的拟合程度,又兼顾模型中所包含的待定参数的个数,并且对二者做出合理的权衡。与同类成果相比的优势分析:本发明主要是针对HM-gMTD模型的进一步改进,提出一个高阶HM-gMTD模型,使其在降低计算的复杂度的同时,提高预测的准确性。
电子科技大学 2021-04-10
一种风电集群轨迹预测与分层控制方法
本发明涉及一种风电集群轨迹预测与分层控制方法,包括:根据风电集群及风电场内的拓扑结构,基于空间相关性和NWP数据进行超短期风电功率预测;根据调度中心下发的调度值,将控制过程在空间上分为集群优化调度层、场群协调分类层和单场自动执行层,将风电功率预测值从时间上逐层细化;在场群协调分类层,基于风电功率预测值对风电场进行分类,分为上爬坡群、下爬坡群、平稳群和振荡群;在单场自动执行层,基于AGC机组下旋转备用裕度和风电送出断面裕度判断风电可增发空间,增发上爬坡群风电场出力或降低下爬坡群风电场出力;基于风电场运行与监测系统,根据监测到的风电场实际值,计算并反馈风电功率误差,修正风电集群和风电场预测值,使优化过程更加精确。
中国农业大学 2021-04-11
基于深度时空分析的综合能源数据挖掘与预测技术
本成果针对城市水电气热等综合能源数据来源广泛,结构复杂,且与用户、时间、空间信息关系紧密的特点,构建了高性能综合能源数据分析平台,提出了细粒度的能源数据分析理论框架及方法,并将其应用于智慧城市建设。
南开大学 2021-02-01
槽式光热发电多模型预测函数控制及其优化
针对太阳能集热系统扰动多、大滞后和大惯性等控制难点,建立了适合控制器设计的简化分段非线性模型,并设计了基于预测函数控制策略的集热系统出口导热油温度控制系统。该预测函数控制策略在调节速度、超调量以及稳定性方面的控制效果均明显优于传统PID控制策略;与未简化的多模型预测控制相比,简化后的多模型预测函数控制的最大动态偏差增大了13%,但计算量大大降低,控制器的实时性也得到增强。
南京工程学院 2021-05-21
人工智能药物筛选、药物设计及毒性预测算法
本成果采用最新的深度学习和分子模拟算法,结合新一代分子特征化方法,开发了多种计算机模型,可用于药物开发中的多个阶段,为药物的快速设计开发提供一个完整的基于人工智能的解决方案。成果:1.药物毒性预测方法:传统的化合物毒性检测技术一般需要使用生化试验、细胞实验、甚至动物模型,这些方法不仅耗费大量时间,而且成本很高。使用计算模型进行有机化合物的毒性预测,所需投入较少,但产出巨大。特别是基于化合物的物理化学和结构特性的计算模型,甚至能够在化合物合成之前就对其进行预测,大大提高了效率,使其越来越受到欢迎。在进行体外和体内试验之前先使用计算机模型对化合物进行大规模的毒性筛选,能够更好地解决候选药物具有毒性的问题。我们建立了一套新的基于多种分子指纹和机器学习算法的化合物毒性预测集成学习算法,运用此集成学习算法建立了新的有机化合物致癌性、致突变性和肝毒性预测模型。我们分别建立了名为CarcinoPred-EL (http://112.126.70.33/toxicity/CarcinoPred-EL/, 致癌性预测)、MutagenPred-EL (http://112.126.70.33/toxicity/MutagenPred-EL/, 致突变性预测)、LiverToxPred-EL (http://112.126.70.33/toxicity/LiverToxPred-EL/, 肝毒性预测)的预测服务器,这些服务器能够为使用者提供更高效更便捷的预测技术服务。自2017年服务器发表起,我们已为国内外药物分子设计研究者提供了5000多次共计超过20多万个化合物的毒性预测服务。在有机化合物毒性预测研究方向,我们主要完成了化合物的细胞毒性、心脏毒性、生殖毒性、血脑屏障透过性、水生生物毒性预测模型,以及糖尿病早期筛查模型的开发,正在进行P450酶阻滞剂性预测模型、基于图神经网络的毒性预测算法研究、基于分子对接的化合物毒性预测研究等。相关研究成果已发表多篇学术论文(Zhang L., et al. Scientific Reports, 2017, 7: 2118. WOS被引次数80,ESI 1%高被引论文;Ai H., et al. Toxicological Sciences, 2018, 165: 100-107;Yin Z., et al. Journal of Applied Toxicology. 2019, 39(10): 1366-1377;Ai H., et al. Ecotoxicology and Environmental Safety. 2019, 179: 71-78;Liu M., et al. Toxicology Letters. 2020, 332: 88-96;Feng H., et al. Toxicology Letters. 2021, 340: 4-14;Li S. et al. Interdisciplinary Sciences: Computational Life Sciences. 2021, 13: 25-33.)致癌性预测服务器首页致癌性预测结果页相关综述对本服务器的介绍RF-hERG-Score预测药物引起的hERG相关心脏毒性2.药物设计方法:在计算机上对药物靶点和药物分子的结构和活性建模,计算药物与靶点之间的相互作用关系,从而设计出具有治疗作用的药物。计算机辅助药物设计可以为药物设计各阶段的实验方案提供有意义的指导,减少需要通过实验评估的候选药物的数量,从而加快新药研发速度。我们应用分子对接、分子动力学模拟、自由能计算、机器学习等方法研究流感病毒等重要疾病的计算机辅助药物设计、并开发更有效的计算机辅助药物设计方法。在计算机辅助药物设计研究我们主要完成了流感病毒M2质子通道蛋白抑制剂虚拟筛选方法研究,正在进行先导化合物生成模型研究、基于机器学习的虚拟筛选打分函数算法开发、SARS-CoV-2病毒S蛋白与受体相互作用及药物设计研究。特异性重打分函数显著虚拟筛选性能显著较高筛选出两个候选抑制剂3.药物靶点识别方法:长非编码RNA(lncRNA)是一种长度在200nt至100,000nt之间的非编码RNA,是转录物的主要成分。研究表明lncRNA在许多生物学和病理学过程中起着重要作用。lncRNA起作用的重要途径是与其靶蛋白结合。lncRNA-蛋白质相互作用的实验研究需要大量资源。累积的实验数据使得通过计算方法预测lncRNA-蛋白质相互作用成为可能。我们使用各种数学建模和机器学习方法开发了几种用于预测lncRNA-蛋白质相互作用的新模型。这些模型命名为:RWLPAP(随机游走),LPI-NRLMF(邻域正则化逻辑矩阵分解),IRWNRLPI(集成随机游走和邻域规则化Logistic矩阵分解),LPI-BNPRA(双向网络投影推荐算法),LPI-ETSLP(基于特征值变换的半监督链路预测),HLPI-Ensemble(集成学习)。在交叉验证中,我们的模型获得了较好的预测性能。lncRNA-蛋白质相互作用预测模型的性能比较lncRNA-蛋白质相互作用预测服务器相关软件著作权:
辽宁大学 2021-04-10
一种天吊式LED多光谱无影灯
本发明公开了一种天吊式LED多光谱无影灯。它包括矩形导轨、无影灯灯头、送风天花、手术台;手术台上方设有矩形导轨、送风天花,送风天花设置在矩形导轨的内侧,矩形导轨、送风天花固定在天花板上,矩形导轨上设有多个无影灯灯头。无影灯灯头包括第一LED灯珠S1~第五LED灯珠S5、自由曲面准直透镜L、第一二向合色镜D1和第二二向合色镜D2。本发明实现照明角度的调节和水平的位移,提高了系统的无影率,简化了无影灯的安装程序。同时,该无影灯解决了以往LED手术无影灯会出现彩色影子的问题,提高了手术创面组织的可分辨能力。
浙江大学 2021-04-11
人工智能药物筛选、药物设计及毒性预测算法
本成果采用最新的深度学习和分子模拟算法,结合新一代分子特征化方法,开发了多种计算机模型,可用于药物开发中的多个阶段,为药物的快速设计开发提供一个完整的基于人工智能的解决方案。 成果:1.药物毒性预测方法:传统的化合物毒性检测技术一般需要使用生化试验、细胞实验、甚至动物模型,这些方法不仅耗费大量时间,而且成本很高。使用计算模型进行有机化合物的毒性预测,所需投入较少,但产出巨大。特别是基于化合物的物理化学和结构特性的计算模型,甚至能够在化合物合成之前就对其进行预测,大大提高了效率,使其越来越受到欢迎。在进行体外和体内试验之前先使用计算机模型对化合物进行大规模的毒性筛选,能够更好地解决候选药物具有毒性的问题。我们建立了一套新的基于多种分子指纹和机器学习算法的化合物毒性预测集成学习算法,运用此集成学习算法建立了新的有机化合物致癌性、致突变性和肝毒性预测模型。我们分别建立了名为CarcinoPred-EL (http://112.126.70.33/toxicity/CarcinoPred-EL/, 致癌性预测)、MutagenPred-EL (http://112.126.70.33/toxicity/MutagenPred-EL/, 致突变性预测)、LiverToxPred-EL (http://112.126.70.33/toxicity/LiverToxPred-EL/, 肝毒性预测)的预测服务器,这些服务器能够为使用者提供更高效更便捷的预测技术服务。自2017年服务器发表起,我们已为国内外药物分子设计研究者提供了5000多次共计超过20多万个化合物的毒性预测服务。在有机化合物毒性预测研究方向,我们主要完成了化合物的细胞毒性、心脏毒性、生殖毒性、血脑屏障透过性、水生生物毒性预测模型,以及糖尿病早期筛查模型的开发,正在进行P450酶阻滞剂性预测模型、基于图神经网络的毒性预测算法研究、基于分子对接的化合物毒性预测研究等。相关研究成果已发表多篇学术论文(Zhang L., et al. Scientific Reports, 2017, 7: 2118. WOS被引次数80,ESI 1%高被引论文;Ai H., et al. Toxicological Sciences, 2018, 165: 100-107;Yin Z., et al. Journal of Applied Toxicology. 2019, 39(10): 1366-1377;Ai H., et al. Ecotoxicology and Environmental Safety. 2019, 179: 71-78;Liu M., et al. Toxicology Letters. 2020, 332: 88-96;Feng H., et al. Toxicology Letters. 2021, 340: 4-14;Li S. et al. Interdisciplinary Sciences: Computational Life Sciences. 2021, 13: 25-33.) 致癌性预测服务器首页 致癌性预测结果页 相关综述对本服务器的介绍 RF-hERG-Score预测药物引起的hERG相关心脏毒性 2.药物设计方法:在计算机上对药物靶点和药物分子的结构和活性建模,计算药物与靶点之间的相互作用关系,从而设计出具有治疗作用的药物。计算机辅助药物设计可以为药物设计各阶段的实验方案提供有意义的指导,减少需要通过实验评估的候选药物的数量,从而加快新药研发速度。我们应用分子对接、分子动力学模拟、自由能计算、机器学习等方法研究流感病毒等重要疾病的计算机辅助药物设计、并开发更有效的计算机辅助药物设计方法。在计算机辅助药物设计研究我们主要完成了流感病毒M2质子通道蛋白抑制剂虚拟筛选方法研究,正在进行先导化合物生成模型研究、基于机器学习的虚拟筛选打分函数算法开发、SARS-CoV-2病毒S蛋白与受体相互作用及药物设计研究。 特异性重打分函数显著虚拟筛选性能显著较高 筛选出两个候选抑制剂 3.药物靶点识别方法:长非编码RNA(lncRNA)是一种长度在200nt至100,000nt之间的非编码RNA,是转录物的主要成分。研究表明lncRNA在许多生物学和病理学过程中起着重要作用。lncRNA起作用的重要途径是与其靶蛋白结合。lncRNA-蛋白质相互作用的实验研究需要大量资源。累积的实验数据使得通过计算方法预测lncRNA-蛋白质相互作用成为可能。我们使用各种数学建模和机器学习方法开发了几种用于预测lncRNA-蛋白质相互作用的新模型。这些模型命名为:RWLPAP(随机游走),LPI-NRLMF(邻域正则化逻辑矩阵分解),IRWNRLPI(集成随机游走和邻域规则化Logistic矩阵分解),LPI-BNPRA(双向网络投影推荐算法),LPI-ETSLP(基于特征值变换的半监督链路预测),HLPI-Ensemble(集成学习)。在交叉验证中,我们的模型获得了较好的预测性能。 lncRNA-蛋白质相互作用预测模型的性能比较 lncRNA-蛋白质相互作用预测服务器相关软件著作权:
辽宁大学 2021-05-10
细胞分析的光纤共聚焦显微光谱与成像装置
光纤共聚焦显微光谱与成像装置是将光纤共聚焦光谱分析技术和显微光学成像技术相融合的细胞检测装置,此装置能够同时获得被测细胞的形态结构信息和反映细胞形态和成分特性的光谱信息,得到被测细胞定性、定量、定位的综合分析信息。 光纤共聚焦显微光谱与成像装置包括光源照明系统、光纤共聚焦光谱分析系统、显微成像和定位系统、数据分析系统,照明光源系统给光纤共聚焦光谱分析系统提供光源;光纤共聚焦光谱分析系统传输照明光照射细胞,开接收携带细胞信息的背向散射的光信号,获取光谱信息进入数据分析系统分析;显微成像和定位系统由照明系统照明,获得反映细胞形态和结构的图像信息进入数据分析系统;数据分析系统同时获取被测细胞的显微图像和反映细胞形态和成分特性的光谱信息。 光纤共聚焦显微光谱与成像装置结合光纤共聚焦技术、后向散射光谱分析技术和显微成像技术,提出了适用于同时获取特定细胞的显微图像和光谱信息的细胞检测装置,能够实时的获取细胞的综合信息。这就解决了目前技术不能够在细胞水平上获取特定位置的组织形态信息和光谱信息的技术问题。对于癌症除检测癌变细胞的显微形态信息外,同时获取相应细胞生化成分的光谱,光谱信息中既包括了形态变化对光的散射特性变化,也包括了细胞中成分变化导致的光吸收特性的变化信息,结合这两种检测技术的细胞分析装置,能及时发现细胞的早期癌变,以便对癌症实施全面而及时的诊断。而且,当前显微成像技术和CCD光谱技术都是比较成熟的检测技术,且CCD光谱技术可以进行实时分析,所以,本发明提供的装置利用现有先进技术,大大提高癌变细胞的检测精度,同时可以大大降低检测成本。
上海理工大学 2021-04-11
首页 上一页 1 2
  • ...
  • 20 21 22
  • ...
  • 79 80 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1