高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种基于忆阻器件的神经元电路
本发明公开了一种基于忆阻器件的神经元电路,本发明中,突 触阵列的忆阻器选用部分易失性双极性电阻转变器件,表达神经元膜 电位的忆阻器选用易失性电阻转变器件,构建神经元电路,并具有突 触基本单元。该神经元电路能够实现生物神经元中的整合放电功能, 表达出局部分级电位,突触具有部分易失性,可以表达活动时序相关 的可塑性,与生物学上神经元与突触在信息存储、传递与处理方面有 极大相似性。本发明可以为硬件模拟大脑神经网络结构提供基
华中科技大学 2021-04-14
钙钛矿单晶光电器件领域研究新进展
新型光电器件中载流子传输层与金属卤化物钙钛矿单晶异质原位集成的关键问题,在无机电子传输层上异质原位生长高质量全无机金属卤化物钙钛矿单晶方面取得研究进展 在全无机电子传输层
南方科技大学 2021-04-14
一种磁隧道结单元及自旋电子器件
本发明公开了一种隧道结单元及磁随机存储器,包括依次连接 的第一电极、第一自由层、非磁性绝缘层、钉扎层和第二电极,还包 括连接在第一电极与第一自由层之间的第二自由层,第二自由层的横 截面积小于自由层的横截面积;第二自由层和第一自由层一起形成了 复合自由层结构;第二自由层用于聚集电流,使得第二自由层处的电 流密度大于第一自由层处的电流密度,从而使得第二自由层的磁矩先 于第一自由层发生翻转;由于第二自由层和第一自由层之间的
华中科技大学 2021-04-14
一种磁隧道结单元及自旋电子器件
本发明公开了一种隧道结单元及磁随机存储器,包括依次连接 的第一电极、第一自由层、非磁性绝缘层、钉扎层和第二电极,还包 括连接在第一电极与第一自由层之间的第二自由层,第二自由层的横 截面积小于自由层的横截面积;第二自由层和第一自由层一起形成了 复合自由层结构;第二自由层用于聚集电流,使得第二自由层处的电 流密度大于第一自由层处的电流密度,从而使得第二自由层的磁矩先 于第一自由层发生翻转;由于第二自由层和第一自由层之间的
华中科技大学 2021-04-14
面向 5G 通信基站用氮化镓基射频器件
(一)项目背景 当前以硅、砷化镓为代表的第一和二代半导体接近其物理极限,以氮化镓、碳化硅为代表的第三代半导体是当前国际竞争热点,也是我国发展自主核心半导体产业、实现换道超车的难得机遇。氮化镓(GaN)特别适合制作高频、高效、高温、高压的大功率微波器件,是下一代通信、雷达、制导等电子装备向更大功率、更高频率、更小体积和抗恶劣环境(高温抗辐照)方向发展的关键技术。 目前氮化镓基射频器件已接近于商用,需解决从走出实验室到小量中试的最后“1 公里”,重点攻克其在可靠性工艺和量产稳定性的瓶颈。 以氮化镓、碳化硅为代表的第三代半导体是当前国际竞争热点,也是我国发展自主核心半导体产业、实现换道超车的难得机遇。 半导体作为信息时代的“粮食”,将成为 5G 基建、特高压、城际高铁和城际轨道交通、新能源汽车充电桩、大数据中心、人工智能、工业互联网等“新基建”七大领域发展的支柱性产业。而氮化镓为代表的宽禁带半导体先进电子器件,凭借其高效、高压、高温等优势,将在“新基建”中大放异彩,可以弥补传统半导体器件的技术瓶颈,满足更高性能器件要求。 (二)项目简介 5G 要求更高的数据传输速率,发射机的效率会出现指数级的下降。这种下降可以使用包络跟踪技术来修复,该技术已经在较新的 4G/LTE 基站以及蜂窝电话中采用。基站中的包络跟踪需要高速,高功率和高电压,这些只有使用 GaN 技术才能实现。诸如 GaN 助力运营商和基站 OEM 等实现了 5Gsub-6-GHz 和 mmWave 大规模 MIMO 的目标。 GaN 可以说为 5Gsub-6-GHz 大规模 MIMO 基站应用提供了众多优势:1、在 3.5GHz 及以上频率下表现良好,对比其他产品优势明显。2、GaN 的特性能转化为高输出功率,宽带宽和高效率。采用 DohertyPA 配置的 GaN 在 100W 输出功率下的平均效率达到 50%至 60%,明显降低了发射功耗。3、在高频和宽带宽下的效率意味着大规模 MIMO 系统可以更紧凑。4、可在较高的工作温度下可靠运行,这意味着它可以使用更小的散热器。 根据 Strategy Analytics 的数据,预计 5G 移动连接将从 2019 年的 500 万增长到 2023 年的近 6 亿。所以需求还将不断上涨。 根据Strategy Analytics的数据,预计5G移动连接将从2019年的500万增长到2023年的近6亿。所以需求还将不断上涨。 Efficient Power Conversion 的首席执行官兼联合创始人Alex Lidow 讨论5G时也说道:“基站中的包络跟踪需要高速,高功率和高电压,这些只有使用GaN技术才能实现。根据Yole Development公司发布的2018年度报告数据显示,随着全球整体数据流量的激增,我国5G产业将迎来大规模的需求增长。预计到2022年,我国5G基站规模将达到千亿市场,5G基站数量将达百万个。所以未来氮化镓基射频器件是5G通信基站收发端的核心。 氮化镓基射频器件是华为和中兴发展 5G 通信产业的核心器件,西安电子科技大学氮化镓射频器件研究团队自 2016 年起就与华为西安研究所、中兴西安研究所等国内主流5G通信公司协同攻关开展氮化镓基射频器件的研究,目前承担的流片服务项目合计约 500 万元。 2017 年,西安电子科技大学与西安市高新区、西电电气集团等联合成立“陕西半导体先导技术中心”,中心致力于推动陕西第三代半导体产业发展,促进以氮化镓为代表的射频器件、功率器件等加速产业化,2019 年团队向陕西半导体先导技术中心转让专利 35 项,作价 2000 万元,双方正在联合推进搭建第三代半导体中试平台,平台将会立足西安,服务全国,提升氮化镓基射频器件量产工艺可靠性,实现相关技术成果转化。 (三)关键技术 本项目由西安电子科技大学作为技术攻关的主要单位,制定技术路线,保障国家重大科技专项“高效 GaN 微波功率器件及可靠性研究”和“5G 移动通信 GaN 芯片可靠性机理研究”研究,与华为和中兴联合开展工程合作项目实施,加快解决器件工艺可靠性工程问题,重点开展氮化镓微波功率与太赫兹器件工程技术研究,突破高性能低缺陷外延材料生长、高效率高可靠氮化镓微波功率器件工艺技术等关键瓶颈问题,协助规模量产高效率 S-Ku 波段典型氮化镓功率器件和模块、5G 基站核心射频模块。
西安电子科技大学 2023-07-12
RP Fiber Power 光纤激光器及光纤器件设计软件
可以设计并优化光纤激光器和放大器、光波导激光器、光纤耦合器、多芯光纤、螺旋芯光纤、锥形光纤;也可以模拟超短脉冲在不同光纤设备中的传输,例如在光纤放大器系统、锁模光纤激光器和通讯系统中的传输。 能够跟踪和优化光纤放大器和光纤激光器,让它们适合各种应用。帮助评估和排除光纤激光器和放大器中各种不利的影响;能够对有源光纤器件性能进行预测;能寻找最佳光纤长度、掺杂浓度、折射率分布等;能够计算掺杂浓度与光线的关系,准确模拟双包层光纤,还可以模拟时域动态变化,可以理解和优化的细节如功率效率和噪声系数。 RP Fiber Power可用于分析和优化各种器件: 单模和多模光纤 计算模式特性;计算光纤耦合系数;模拟光纤弯曲、非线性自聚焦效应对光束传输和高阶光孤子传输的影响。 光纤耦合器、双包层光纤、多芯光纤、平面波导 模拟双包层光纤的泵浦吸收,光纤耦合器的光束传输, 光在锥形光纤的传输, 分析弯曲的影响, 放大器中的交叉饱和影响, 泄漏模式等。 光纤放大器 研究单级和多级放大器中的增益饱和特性(连续或脉冲放大器), 铒镱共掺光纤放大器能量转移过程、猝灭效应、自发辐射放大等。 光纤通信系统 分析色散与非线性信号失真,放大器噪声的影响,优化放大器非线性效应和放置位置。 光纤激光器 分析并优化能量转换效率、波长调谐范围、动态调Q。 超快光纤激光器和放大器 研究脉冲的形成机制和稳定范围,非线性效应和色散的影响,抛物脉冲放大,优化色散脉冲压缩,灵敏度反馈,超连续谱的产生。 脉冲和超快速固体激光器和放大器 研究Q开关,模式锁定行为,找到可饱和吸收器所需的特性,分析反馈灵敏度,啁啾脉冲放大研究再生放大稳定性极限。 这款软件是致力于光纤器件学科研究或工业开发人士的必备工具。这款软件及其技术支持将为您的工作效率和工作能力提供极大的便利。同时,这款软件也是一款相当出色的教学工具。 目前已使用该软件的高校:耶拿大学、英国南普顿大学、北京工业大学、中国科学技术大学、上海技术应用学院、华中科技大学、西北大学、复旦大学、深圳大学、国防科技大学、长春理工大学、南京理工大学等。 目前已使用该软件的单位:费朗霍夫研究所、苏州纳米所、兵器装备部、三江航天、上海光机所、绵阳九院、中科院软件所、中科院光电所商业单位、北京敏视达雷达有限公司等。   ※ 光纤数据: 软件中带有各种稀土掺杂光纤数据,即时可以仿真各种光纤激光器和放大器。   ※ 各种公开数据: “Yb-germanosilicate” “ErYb-phosphate” “Er-fluorozirconate F88” “Er-silicate L22”  “Er-fluorophosphate L11”  
武汉墨光科技有限公司 2022-10-19
MXY5002光无源器件参数测试实验仪
一、产品简介      光无源器件是光纤通信设备的重要组成部分。它是一种光学元器件,也是其它光纤应用领域不可缺少的元器件。该实验仪重点介绍了常用的光无源器件的相关参数及测试方法,主要包括光纤转换器、光纤变换器、光纤耦合器,光纤隔离器、光纤衰减器、WDM等器件的参数的测试原理及测试方法。帮助学生直观的了解各种光无源器件的性能,从而更准确的使用不同器件进行光纤通信方面实验。 二、实验内容  1、光纤转换器测试实验  2、光纤变换器测试实验  3、光纤耦合器测试实验  4、光纤隔离器特性测试实验  5、波分复用器和解复用器测试实验  6、可调光纤衰减器测试实验  7、光纤机械光开关特性测试实验  8、光纤偏振控制器特性测试实验  9、光纤偏振分束器(PBS)性能能参数测试实验 三、实验配置参数 1、光源:波长1310±20nm,1550±20nm;输出功率:1-2.5mw,连续可调;输出端口:FC/PC;稳定性<0.5db(5h);光源类型:LD光源; 2、光功率计:波长范围800-1700nm;输入接口:FC 校准波长:1550nm,1310nm; 3、偏振控制器:插入损耗<0.05dB;消光比>40dB;回波损耗>65dB; 4、光纤机械光开关:插入损耗:1310/1550  P1→P2 0.56/0.54 dB ,P1→P3 0.53/0.47 dB ;回波损耗>50dB ;开关速度:≦8ms ; 5、高隔离度光纤隔离器:最大插入损耗:0.35dB ;回波损耗:≧50dB ;隔离度:≧30dB ; 6、光纤耦合器:分光比:50% : 50% ;最大插入损耗1310/1550: 3.3dB ; 7、光纤波分复用器:隔离度:1310nm :31.8% ;1550nm :34%;插入损耗:1310nm :0.30%;1550nm :0.34% ; 8、光纤可调衰减器:0-30db可调; 9、配置:光纤光源,光纤光功率计、光纤耦合器、光波分复用器、光纤偏振控制器、光纤偏振分束器,可调衰减器、光纤隔离器、光纤机械光开关、法兰盘、实验指导书及实验录像光盘等。 四、实验目的 1、了解光连接器及其原理、种类,实验操作进行连接器参数测量; 2、掌握光纤偏振控制器工作原理,实验操作单模光纤偏振状态控制; 3、了解光纤耦合器用途及其性能参数,实验操作测量耦合器特性参数测量; 4、了解光纤隔离器用途及其性能参数,实验操作光纤隔离器特性参数测量; 5、了解光纤光开关用途及其性能参数,实验操作光纤光开关特性参数测量; 6、了解光波分复用器(WDM)的原理与意义,操作双波长波分复用(WDM)的原理性实验;
天津梦祥原科技有限公司 2021-12-17
低品位热能驱动的吸收式制冷除湿一体化空调系统
本发明公开了一种低品位热能驱动的吸收式制冷除湿一体化空调系统,包括溶液除湿循环回路和溶液制冷循环回路;溶液除湿循环回路包括发生器、溶液?溶液换热器和溶液除湿器;发生器输出端a通过溶液?溶液换热器连接溶液除湿器输入端,溶液除湿器输出端通过溶液?溶液换热器连接发生器输入端;溶液制冷循环回路包括吸收器、溶液?溶液换热器、发生器、冷凝器、蒸发器以及表冷器;吸收器输出端通过溶液?溶液换热器连接发生器输入端,发生器输出端a通过溶液?溶液换热器连接吸收器输入端b,发生器输出端b连接冷凝器输入端,冷凝器输出端a连接蒸发器输入端a,蒸发器与表冷器通过第二阀门和冷冻水泵连接,蒸发器输出端b连接吸收器输入端a。
东南大学 2021-04-11
非制冷薄膜型红外焦平面阵列探测器结构及其制备方法
非制冷薄膜型红外焦平面阵列探测器结构,包括含读出电路的第一基片,含热隔离微桥阵列和敏感元阵列的第二基片,所述第一基片与第二基片键合成一体,所述热隔离微桥阵列中的各热隔离微桥单元以刻蚀后的第二基片为桥墩,以与所述桥墩顶面紧密结合的支撑层为桥面;各热隔离微桥单元的桥面上均设置有敏感元阵列,各敏感元阵列通过引线电极与第一基片上对应的读出电路实现电连接。制备方法:第一基片键合面图形的制备;支撑层制备;敏感元阵列的制备;第二基片正面保护;热隔离微桥阵列的制备;第一基片与第二基片的键合;除去第二基片的正面保护层;敏感元电极读出电路电极的连接。
四川大学 2021-04-11
用于太阳能空调的板壳式溴化锂吸收式制冷机
高效、低成本太阳能空调的创新要点:1) 采用高效、紧凑的板壳式换热器组成溴化锂吸收式制冷机。具有优良强化传热性能的波纹板传热元件采用不锈钢材料,其耐腐蚀性能优于铜管,且材料单价较低,批量生产时,因材料消耗少可使成本比目前的铜管方案降低40%左右。2) 采用双效与单效耦合蓄能运行的循环方案。采用中温型太阳能集热器产生0.6MPa的水蒸汽,白天日照时段采用双效循环运行并进行蓄热,而在其余时段利用蓄热按单效循环驱动制冷机运行。该方案不仅效率高,日平均当量制冷性能系数可达0.8~1左右,而且其单位体积蓄能罐的蓄能密度极大,可实现无需用辅助能源而完全靠太阳能进行昼夜空调。3) 建设太阳能空调和热水站综合系统,在居民住宅楼的屋顶布置太阳能集热器阵,建设全年供应全体住户生活热水的太阳能热水站和夏季供应顶一、二层住户空调冷水的综合系统;若结合地源水低温热源系统则可建设吸收式热泵系统用于冬季采暖。由于综合利用系统中集热器的投资费用被所有热水用户分摊,空调用户的投资可很快从节省的电费中得到回收,该综合系统可在目前的技术水平和能源价格下使太阳能空调获得良好的经济效益。并为太阳能热水器的发展开拓了更大的空间。23kW(2万kcal/h) 用于太阳能空调的双效与单效耦合型板壳式溴化锂吸收式制冷机。
东南大学 2021-04-10
首页 上一页 1 2
  • ...
  • 17 18 19
  • ...
  • 27 28 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1