高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
生物柴油制备技术
项目简介在石油危机的今天,发展石化石油的替代品具有重要的意义。由于生物柴油与石化柴油具有相近的性能,且生物柴油具有可再生、易于生物降解、燃烧污染物排放低、温室气体排放低等特点,因此生物柴油具有广阔的发展前景。本技术已以废弃物麻风树籽油、黄连木籽油、棉籽油为原料,采用生物催化的方法制备生物柴油,具有产率高、环境友好等优点。二、市场前景我国生物柴油产业作为新兴的高新技术产业刚刚诞生,但其发展前景是广阔和光明的,据有关部门预测:到2020年中国石油需求将达到4.5亿吨每年,而届时中国石油年产量预计只有2亿吨左右,将产生2.5亿吨的缺口。且目前,生产柴汽比约为1.8,而市场的消费柴汽比均在2.0以上。云南、广西、贵州等省区的消费柴汽比甚至在2.5以上。随着西部开发进程的加快,随着国民经济重大基础项目的相继启动,柴汽比的矛盾比以往更为突出。由此可见,生物柴油具有广阔的发展空间。麻风树、黄连木是公认的生物能源树。主要生长在我国云南、贵州、四川、广东、广西、福建、海南、太行山等地区。综合开发利用潜能高,不占耕地,耕作栽培成本低,可以生长在荒山、荒地等贫瘠的土地上,一方面有利于绿化荒山野岭,改善生态环境,另一方面其籽油又可以作为生产生物柴油的原料。我国是产棉大国,但棉籽油目前没有得到充分利用。因此本技术市场前景广阔。三、规模与投资按年产5万吨规模计,总投资约400万元左右。四、生产设备主要设备:反应釜、过滤机、精馏塔五、效益分析产品售价:0.6万元/吨,生产成本:0.5万元/吨,利税:0.1万元/吨六、合作方式面议。项目负责人: 高 静联系电话:  022-60204293
河北工业大学 2021-04-11
新型电池制备工艺
如今人们对可携带电池的要求越来越高,除了本身提供的高能量、大倍率性能外,还需要电池具有可折叠属性。然而基于高温烧结和刷浆成膜的传统工艺,存在着先天的不足:极片受力变形,活性颗粒脱落,反复受力时会导致电池使用寿命急剧下降。 因此在保证电池本身能量和功率密度的前提下,研发具优异力学性能的柔性电池的新工艺已经成为锂电池技术真正引发能源改革的重要环节。 基于直接电沉积的新型电池新工艺技术于2017年在国际著名期刊Science Advance报道,并已申请相关专利。
南京大学 2021-04-14
花椒酒制备技术
 我国花椒资源丰富, 其品种、种植面积和产量均居世界首位, 花椒是食药两用原料,作为药材,花椒味辛、性热,归脾、胃经,具有芳香健胃、温
西华大学 2021-04-14
国家知识产权局办公室 工业和信息化部办公厅关于组织开展创新管理知识产权国际标准实施试点的通知
ISO56005国际标准是由我国提出并推动制定的首个知识产权管理国际标准,是创新管理国际标准体系的重要组成部分。ISO56005国际标准以创新价值实现为核心导向,坚持创新管理与知识产权的深度融合,将知识产权管理活动嵌入创新全过程,通过明确创新过程中的知识产权管理目标、方法和路径,全面提升创新效率、创新质量和创新效益。
国家知识产权局 2023-05-23
边缘智能和云端融合技术
本技术实现了“云-边-端”融合的分布式计算框架。基于演化知识图谱融合大规模端设备采集的异构数据,为云端智能决策提供数据支撑。利用基于分支网络的边缘智能技术,满足智能终端输入数据的高精确度、近实时推断分析处理需求。通过面向群智学习应用的端、边缘和云分布式协同训练优化关键技术,在保障终端数据隐私前提下实现云边端环境下的大规模高效分布式模型训练。
东南大学 2021-04-11
和软化技术及配套材料
成果描述:系统研究从源头消除或削减制革过程氨氮污染物的科学方法和技术原理,构建了无铵盐脱灰和软化技术,并研究开发了3种配套化工材料,为从源头消除/削减氨氮排放提供了科学依据和技术支撑。 研究开发的高效无氨脱灰材料具有优良的pH缓冲性、良好的脱钙能力和较好的渗透性,用于制革脱灰,脱灰裸皮品质良好,氨氮排放量降低95%,总氮排放量降低90%。 研究开发的无氨软化助剂与现有的软化用蛋白酶制剂一起应用于皮革软化工艺中,能大幅降低软化废液中的氨氮浓度,有效脱除脱灰裸皮中的钙,促进蛋白酶制剂对皮蛋白质的水解。 在该方向已获得国家授权发明专利2项,开发的材料已在我国皮化龙头企业成功中试。市场前景分析:应用领域:制革工业;该成果可转让给皮化企业或直接在制革企业推广应用。 市场需求:加工生产牛、羊、猪原料皮的制革企业都需要脱灰、软化产品,而随着企业环保意识的增强及各级政府环保执法力度的提高,高效、安全的无氨脱灰和软化产品的需求量正日益增加,无氨脱灰和软化产品必将逐渐取代常规的铵盐产品。与同类成果相比的优势分析:研究开发的高效无氨脱灰材料具有优良的pH缓冲性、良好的脱钙能力和较好的渗透性,用于制革脱灰,脱灰裸皮品质良好,氨氮排放量降低95%,总氮排放量降低90%。 研究开发的无氨软化助剂在软化中的脱钙效果优于硫酸铵。无氨软化废液的总蛋白质浓度明显高于铵盐软化,而羟脯氨酸浓度并未显著升高,表现出良好的使用安全性。 国内领先。
四川大学 2021-04-10
OLED,梦幻显示和照明技术
作为显示和照明的器件,有机发光材料是最重要的材料。有应用价值的发光材料必须具有高的发光量子效率、良好的载流子传输特性、成膜特性和热稳定性。而在OLEDs中荧光材料只能利用占25%的单重激发态的能量,其量子效率最高只能达到25%。而磷光材料能够利用三线态的能量,理论上量子效率最高可达100%。其中铱配合物是电致磷光材料中最具潜力的发光材料,目前商用显示和照明器件用得绿光和红光材料就是铱的配合物
南京大学 2021-04-10
水泵设计和水泵节能改造
水泵叶轮是决定水泵性能的关键部件,采用全三元黏性正问题计算与反问题设计迭代进行水泵叶轮设计,是目前国际通行的高性能叶轮的设计方法。 全三元黏性正问题计算是应用全三元CFD理论和技术直接求解叶轮内流场参数,其主要特点是(1)采用了全三维粘性流体力学模型;(2)求解控制方程组的离散方法采用了适合工程应用的有限体积法;(3)采用成熟的网格划分技术和前后数据处理技术,求解出泵内三维粘性流场的速度分布、压力分布及其它流动特征参数,为反问题设计提供依据。 反问题则是根据实际运行需要流量、扬程、功率和效率等工况参数,以及流动控制边界条件等要素,设计水泵叶轮和蜗壳等过流部件的几何尺寸和形状,从而实现对叶轮内流动特征的控制。 根据上述水泵叶轮研究设计思路,分析研究水泵实际运行工况,对低效率叶轮的叶片形状、叶片进出口几何形状、叶轮前后盖板几何形状做设计改进,达到减小损失、提高效率的效果。 购买了PHOENICS、FLUENT、NUMECA等商用CFD软件,购置了联想1800集群式计算机系统,采用“两类流面”理论编制了叶轮设计软件,提高了设计水平,缩短了产品开发周期,部分成果已经为企业采用。
上海理工大学 2021-04-11
纳微胶囊技术和产品
纳微胶囊技术即将活性物质(芯或内相)用各种天然的 或合成的高分子化合物连续薄膜(壁或外相)完全包覆起 来,而对目的物的原有化学性质丝毫无损,然后逐渐地通过 某些外部刺激或缓释作用使目的物的功能再次在外部呈现出 来,或者依靠囊壁的屏蔽作用起到保护芯材的作用。 鉴于纳微胶囊化技术带来的实用价值及其在众多领域中 的应用前景,已经越来越受到人们的关注,目前对纳微胶囊 化技术的研究主要集中在开发性能更优的纳微胶囊产品、新 的纳微胶囊制备方法、更佳的乳化方法、更合适的壁材以及 纳微胶囊性能的评价方法等。此外,为了从理论上对微胶囊 的研制进行指导,人们通过建立数学模型并运用先进的检测 手段对纳微胶囊的形成机理、芯材的释放机理进行了更深入 的研究。我国研究人员对微胶囊技术的研究虽然起步较晚,但已取得了很大的进步,在医药、食品、染 料、涂料、纺织、细胞移植等领域进行了一定的实际应用和较深入的研究,不过与国外相比还存在较大 差距,特别是对成囊机理的分析,新技术、新设备的开发,药物控释、缓释及靶向释放等方面的研究还 很不足。 本项目组已研发出多款纳微胶囊技术: 1. 多壁材纳微胶囊技术:采用酪蛋白
中山大学 2021-04-10
工业设计和印刷包装
工业设计和印刷包装专业有一个明确的目标:紧扣创新主题,服务于出版、印刷、机械,创建完备的艺术创新设计平台。近年来,工业设计系积极面向国民经济主战场,通过产学研模式,与国内外著名企业建立了良好的合作关系,为30多家企业进行过产品创新、信息产品设计,涉及到机械、电子、IT、家电、玩具、文具、动漫、仪器仪表、展览展示等行业,为企业创造专利50多项,获得了社会、企业的广泛好评。    工业设计专业有现代设计制造及快速模型实验室,拥有三坐标测量仪、高精度数控加工中心、FDM三维快速成型机、真空浇铸机等多种先进仪器和设备,为研究和教学创造了良好的条件。 印刷与包装工程专业主要的研究内容和方向涉及:各种纸类与非纸类数字化印刷系统的设计与开发、高保真印刷色彩复制与再现、印刷质量在线控制系统研究与开发、印刷性能与过程控制检测技术与设备的研究与开发、印刷过程智能化控制系统研究与开发、数字化工作流程的研究与开发、印刷管理系统的开发、油墨研究与开发、印刷机设计与改造、印刷工艺的设计与优化、色彩管理系统的开发、物流包装系统设计与优化、功能性包装系统的研究与开发、防伪包装的设计与开发、印刷包装性能检测与评价、包装结构设计与开发以及对外提供各种培训。
上海理工大学 2021-04-11
首页 上一页 1 2
  • ...
  • 55 56 57
  • ...
  • 463 464 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1