高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种薄型电动二维精密平台
本实用新型公开了一种薄型电动二维精密平台,包括上平台、下平台以及联接安装在两者之间且整体呈平板结构的中间连接件,其中中间连接件的上表面与上平台底座表面相互平行,并在两者之间保持间隙用于储存润滑介质;该上表面的两侧还分别设置有沿着 X 轴方向分布的导轨副,同时通过设置在外侧凹陷区域的 X 向电机和第一精密螺纹丝杆传动单元,使上平台沿着导轨副在 X 轴方向上移动。该中间连接件的下表面结构与上表面相类似。通过本实用新型,能够在显著减少平台整体厚度的情况下,在 X 轴和 Y 轴两个运动方向上实现高精度和较大
华中科技大学 2021-04-14
堆浸-萃取-电积制备高纯金属技术
目前国内国际铜、镍、锌等金属需求量逐年增加,价格始终运行在高位,而应用于传统火法冶金工艺的资源日趋减少,有价金属矿物品位越来越低,且复杂、共生、难选矿难已得到应用。本技术根据矿物不同分两部分:硫化矿生物堆浸,氧化矿酸堆浸。生物堆浸是采用从自然界中选育的微生物与水和空气就可提取矿物中的有价金属,氧化矿则直接矿物筑堆浸出。基本工艺为堆浸—溶液萃取—电积三个基本步骤,将传统几十道工序简化为简单三个,且在常温常压下进行,能耗低、投资省,灵活机动,规模可大可小,产品(电铜、电镍)纯度高于传统工艺。该技术可用于铜、镍、钴、锌硫化矿的单一或共生矿物的冶金,可适用于高、中、低品位矿物,尤其是低品位难选矿物。
北京科技大学 2021-04-13
一种高铁酸钾的制备方法
(专利号:ZL 201410491153.0) 简介:本发明公开了一种高铁酸钾固体的制备方法,属于水处理技术领域。该制备方法包括以下步骤:(1)以次氯酸钙和碳酸钾反应制备碱性饱和的次氯酸钾溶液;(2)冰水浴环境中,向碱性饱和次氯酸钾溶液中加入九水硝酸铁固体,生成高铁酸钾溶液;(3)向高铁酸钾溶液中加入饱和氢氧化钾溶液,冰水浴中静置,抽滤,得高铁酸钾固体粗产品;(4)用氢氧化钾溶液溶解高铁酸钾粗产品,抽滤,冰水浴中重结晶,抽滤,得重结晶后高
安徽工业大学 2021-01-12
高量子效率的碳点的制备及应用
本成果成功制备了一种高量子效率的碳点。该碳点在钝化后具有尺寸均一、分散性良好、发光强度高等特点。值得说明的是该碳点量子效率高达83%,超越了该研究领域全球的最高值,位居首位。将碳点成功应用在了LED器件上,LED呈现明亮的白色光,且色度坐标(0.3308,0.3312)非常接近于纯白光(0.33,0.33),是一个高色纯度的LED白色荧光粉。
南京工业大学 2021-01-12
一种宽输入范围高电源抑制比的带隙基准电压源
一种宽输入范围高电源抑制比的带隙基准电压源,包括电压预调节电路和带隙基准核电路,电压预调节电路产生一个低温漂、高电源抑制比的预调节电压Vreg对带隙基准核电路进行供电,带隙基准核电路包括启动电路、负温度系数电流ICTAT产生电路、正温度系数电流IPTAT产生电路和非线性电流INL产生电路,非线性电流INL产生电路用于补偿负温度系数电流ICTAT产生电路中的高阶温度分量,通过叠加电流ICTAT、IPTAT、INL并由电流?电压转换电路得到近似零温度系数的基准电压Vref。
东南大学 2021-04-11
吉星微课助手T428M高拍仪带数字麦克风
广州市吉星信息科技有限公司 2021-08-23
一种水性带锈防腐涂料及其制备方法
简介:本发明提供一种水性带锈防腐涂料及其制备方法,属于钢铁表面防腐涂装技术领域。该涂料的原料组成及质量百分数为:铁锈转化剂20~30、复合高分子乳液50~60、渗透剂0.01~0.2、成膜助剂0.1~0.5、增稠分散剂0.01~0.2、去离子水10~20。本发明所制备的水性带锈防腐涂料可直接用于锈蚀钢材的涂装,所提供的制备方法具有制备工艺简单、成本低廉的优点,所制备的水性带锈防腐涂料性能优良。
安徽工业大学 2021-04-13
高熔体强度聚丙烯的制备及其发泡技术
生产发泡聚丙烯的关键难点在于通用聚丙烯的熔体强度极低,在发泡过程中包裹不住气 体,而产生熔体破裂,不能发泡或发泡倍率很低。此外,发泡聚丙烯的生产方式和品种主要分 为挤出发泡聚丙烯、珠粒发泡聚丙烯以及注塑发泡聚丙烯三种,所有这些发泡聚丙烯都需要采 用高熔体强度聚丙烯作为原料才可能得到。可当今采用齐格勒-纳塔催化剂合成的通用大宗聚 丙烯树脂都属于线形半结晶高聚物,未融化之前是坚硬的固体,一旦融化后其熔体就几乎没有 强度,无法包裹气泡形成泡沫材料。要将通用聚丙烯改成高熔体强度,可以包裹气泡形成泡沫 材料的聚丙烯,世界上目前只有巴赛尔、北欧化工等少数公司拥有该技术。 反应挤出研究室从2000年即开始了发泡聚丙烯的研究。分别在聚丙烯分子链长枝化、基础 发泡理论以及与该理论相应的发泡工艺等几方面进行了深入的研究。本项目的研究抓住了问题 的核心,首先从聚丙烯分子链长枝化方面取得突破,获得了熔体强度以及可发性超出国外最优 秀产品的长枝化聚丙烯。并且完成了从基础理论、小试、中试到工业化技术路线确定的全过 程。 为了对发泡聚丙烯发展进行实质性的推动,我们对高熔体强度聚丙烯的下游产品挤出发泡 聚丙烯 (XPP) 、珠粒发泡聚丙烯 (EPP) 以及注塑发泡聚丙烯展开了全面的研究。着重进行了基 础发泡理论的研究,特别在建立聚丙烯拉伸黏度与聚丙烯泡沫可发性之间的对应关系,以及如 何通过工艺技术实现发泡过程等方面进行了大量深入的研究。
华东理工大学 2021-04-11
低成本高稳定氮化物荧光材料的制备
最近以来,LED照明以其节能环保等优点,获得了大规模的应用。以氮化物结构陶瓷相关材料(如AlN,Si3N4)为寄出的氧氮化物荧光粉在保持了高温、化学和力学稳定性的基础上,还具有较为优异的光转换性能,赢得了越来越广泛的关注。其中, 有潜力应用在紫外激发的白光LED上的Eu2+掺杂AlN蓝色荧光粉不仅具有较高的光量子效率,而且与常用的热淬灭严重的BaMgAl10O17:Eu2+ (BAM)相比,具有很高的热稳定性。但是,目前报道的Eu2+掺杂AlN蓝色荧光粉的制备方法(如Dierre B, Yuan X L, Inoue K等, J. Am. Ceram Soc, 2009, 92 (6):1272-1275;Hirosaki N, Xie R J, Inoue K等,Appl. Phys. Lett. , 2007, 91(6): 061101)都是采用高纯度氮化物粉体在高温下通过固相反应合成,要求2050℃的高温下,10个大气压的氮气压力,保温4个小时以上获得,粉体还要在保护环境中球磨粉碎由于高温产生的团聚,成本及其高昂,且颗粒尺寸控制困难。探索能够得到高纯度、粒径均匀可控、发光性能好的荧光粉且成本低的合成方法,对于这类新型材料的研究、应用都具有重要意义。 目前, AlN的合成方法主要有以下几种: 铝粉直接氮化法、碳热还原法、气相还原氮化法、裂解法、等离子体法、电弧熔炼法、自蔓延高温合成法、微波合成法,其中前两种方法已经应用于工业化大规模生产。比较而言,铝粉直接氮化法为强放热反应,反应不易控制,反应过程中放出的大量热易使铝形成融块,造成反应不完全,难以制备高纯度、细粒度的产品;碳热还原法制备的氮化铝粉末纯度高、性能稳定、粉末粒度细小均匀、成形和烧结性能良好,但是因为反应物中必须加入稍过量的碳以保证反应完全,这种方法难以避免碳的残留;而气相还原氮化法制得的AlN纯度高、粉末粒度细小均匀并且大大减少了碳的残留。而在制备氮化铝前驱体时溶胶-凝胶法又以成分易分布均匀、颗粒细小胜过固相混合法。我们首次利用柠檬酸做络合剂,通过溶胶凝胶法制备Eu2O3和Al2O3均匀混合的反应前驱体,结合气相还原氮化法的方法来合成AlN:Eu2+荧光粉,如下图。这种制备方法成本低,且具有很强的普适性,可应用于合成其他高纯氮化物应该材料。 该方法解决了生产氮化物荧光材料中需要高纯氮化物作为起始粉料成本高等劣势,利用价格低廉,原料易得的氧化物作为原料,合成出所需的氮化物荧光材料。而且此方法反应活性高,低温下得到颗粒大小均匀,发光稳定可控的发光材料,节约后处理成本。
电子科技大学 2021-04-10
低成本高稳定氮化物荧光材料的制备
最近以来,LED照明以其节能环保等优点,获得了大规模的应用。以氮化物结构陶瓷相关材料(如AlN,Si3N4)为寄出的氧氮化物荧光粉在保持了高温、化学和力学稳定性的基础上,还具有较为优异的光转换性能,赢得了越来越广泛的关注。其中, 有潜力应用在紫外激发的白光LED上的Eu2+掺杂AlN蓝色荧光粉不仅具有较高的光量子效率,而且与常用的热淬灭严重的BaMgAl10O17:Eu2+ (BAM)相比,具有很高的热稳定性。但是,目前报道的Eu2+掺杂AlN蓝色荧光粉的制备方法(如Dierre B, Yuan X L, Inoue K等, J. Am. Ceram Soc, 2009, 92 (6):1272-1275;Hirosaki N, Xie R J, Inoue K等,Appl. Phys. Lett. , 2007, 91(6): 061101)都是采用高纯度氮化物粉体在高温下通过固相反应合成,要求2050℃的高温下,10个大气压的氮气压力,保温4个小时以上获得,粉体还要在保护环境中球磨粉碎由于高温产生的团聚,成本及其高昂,且颗粒尺寸控制困难。探索能够得到高纯度、粒径均匀可控、发光性能
电子科技大学 2021-04-10
首页 上一页 1 2 3 4 5 6
  • ...
  • 379 380 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1