高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
醇基及水基铸造涂料
可以量产/n该成果利用我国广泛的矿产资源制造铸造行业需要的铸造涂料,产品 用于铸造行业,能替代昂贵的锆英粉涂料,产品耐火度达1800 度以上, 2h 悬浮率达 96%以上。经实验,涂料中各组分按重量百分比如下:400~600 目耐火粉料占 44~55%,钠基膨润土 1.30~1.45%,水 0.45~0.60%,聚乙烯醇缩丁 醛 0.5~0.7%,热塑性酚醛树脂 1.4~1.6%,乙醇 41~52%。制备方法: 1)按比例称取各原料;2)先将钠基膨润土和水碾压预处理成膏状物;3)将 400~600
湖北大学 2021-01-12
糠醇生产及相关技术
糠醇是糠醛的重要衍生物,也是一种重要的有机化工原料。其主要用作生产铸造工业与防腐涂料所需的糠醛树脂、呋喃树脂、糠醇-尿醛树脂、酚醛树脂等。另外在溶剂、稀释剂、以及医药,有机合成等方面也有广泛的用途。本技术以糠醛、氢气为主要原料,在催化剂存在下,采用液相加氢合成糠醇,最终经过精馏获得高品质的产品。同现有工艺相比,本技术采用最先进的连续管式反应器,具有单套处理能力大,原料消耗低,过程安全易控等优点,并且可以副产高附加值的2-甲基呋喃,因此具有很强的竞争优势。 2-甲基呋喃是一种重要的有机化工中间体,主要用作制取维生素B1,磷酸氯喹和磷酸伯氨喹以及丙烯菊酯的原料。此外,2-甲基呋喃作为性能优越的溶剂,在高分子合成及其它医药方面多有应用。在糠醇生产过程中,副产物?-甲基呋喃一般占糠醇产量的1~2%,而现有的工艺往往将其作为低沸物脱除,造成真空泵循环水或大气严重污染,而且存在安全隐患。经过潜心研究,本技术实现了从糠醇生产中2-甲基呋喃的高效提取,产品无色透明,纯度≥99.5%,经济效益十分显著。
华东理工大学 2021-04-13
硝基苯催化加氢合成对氨基酚
项目简介对氨基苯酚(p-AminopHenol,简称PAP)是合成医药、农药及染料等的重要中间体,并可用作橡胶防老剂。是世界十大药品之一扑热息痛及子午线轮胎防老剂的主要原料。国内外有关对氨基酚合成研究的报道很多,主要有:对硝基苯酚铁粉还原法、硝基苯催化氢化法和硝基苯电解还原法等。其中硝基苯催化加氢还原法工艺流程短,能耗低,污染小,设备和工艺条件也不十分苛刻,对氨基苯酚收率较高,产品质量较好,被普遍认为是未来发展的方向。而目前国内之所以一直未能实现大规模的工业化生产,主要存在以下问题:(1)催化剂与产品分离困难。目前,该工艺所采用催化剂为Pt/C,所用载体为粉末状活性炭。该催化剂不仅粒度小,而且比重较小,在工业化生产中将催化剂从反应后的混合物中分离出来极为困难。(2)生产成本高。由于该工艺采用贵金属Pt为催化剂,因此催化剂的回收及套用将直接决定着生产成本。Pt/C催化剂在回收过程中损失较为严重,而且失活催化剂的再生也较为困难,导致生产成本上升,市场竞争力下降。(3)以硫酸为反应介质,对设备材质要求较高,同时副产大量的稀硫酸铵溶液,必须进行综合利用。针对目前该工艺存在的上述问题,本项目研究的重点是在现有工艺的基础上,开发Pt/SiO2催化剂,利用SiO2比重大,易于分离的特点,解决催化剂与产品分离上的困难,降低产品成本。以Pt/SiO2为催化剂,PAP收率可达到85%。二、市场前景几年来,全世界对氨基苯酚的消费量已超过12万t/a;目前,我国需求量也已超过3万t/a,并以10%/a的速度增长,因此对氨基苯酚具有广阔的市场。三、合作方式  寻求中试放大合作。项目负责人:王延吉联系电话: 022-60204867
河北工业大学 2021-04-11
FCC汽油萃取精馏-加氢深度脱硫组合技术
一、项目简介全球性的原油变重变劣,使原油硫含量增加;目前对满足环保要求的汽油硫含量指标日益严格,汽油深度脱硫日益重要。国内外汽油产品大部分来源于流化催化裂化(FCC),国外占三分之一,国内约占80%,造成我国汽油硫含量普遍偏高。研究和开发FCC汽油深度脱硫技术,降低汽油硫含量,是我国炼油、化工行业的一项紧迫任务。常规深度加氢脱硫(HDS)技术存在明显不足:汽油收率低、汽油质量差(辛烷值低)、投资费用和操作成本高。解决途径:开发新的深度加氢脱硫技术、开发各种非加氢脱硫技术、或开发非加氢脱硫技术与加氢脱硫结合的技术。在各种非加氢脱硫技术(吸附脱硫、微生物脱硫、萃取/萃取精馏等)中,汽油萃取精馏脱硫具有显著的优势。与FCC汽油全馏分深度加氢脱硫工艺相比,FCC汽油轻中馏分萃取精馏脱硫-萃取相与重馏分加氢脱硫组合工艺的投资成本与操作成本明显低于前者,此项技术具有普遍的推广意义。本项目为此组合工艺的非加氢脱硫部分。二、市场前景汽油萃取脱硫、萃取精馏脱硫技术具有设备投资低、不耗氢、操作费用低等优点,若与现有的加氢脱硫工艺结合则会实现低操作成本和极小的辛烷值损失的FCC汽油深度脱硫的目的,这样就更进一步地拓展了该类技术的发展空间和应用前景。因此,该类技术已成为清洁燃料生产领域的重点研究方向之一。主要经济技术指标:1)脱硫汽油残硫含量小于30ppm;2)溶剂损耗与目前芳烃抽提工艺的持平;3)最终产品汽油RON损失<1,芳烃含量基本与原料中相同,烯烃含量减少约为3%,烷烃含量增加约为3%;优化FCC汽油切割馏分萃取精馏脱硫过程条件。实验结果表明,在回流比一定的条件下改变剂油比,随着剂油比的增加脱硫率增加,剂油比达到0.55时脱硫率为95%,当剂油比为0.765时脱硫率为96%,剂油比在0.55-0.765时脱硫率变化缓慢,兼顾经济效益和产品质量,剂油比0.55为宜。该操作条件下硫含量低于30ppm。溶剂热稳定性能好、沸点高,回收后萃取剂的脱硫效果很好,可以重复使用。中重馏分汽油、复配油的加氢脱硫处理结果表明,在适当的加氢条件下,可以使硫含量降到10ppm以下;调和汽油的辛烷值测量结果表明,萃取精馏+加氢深度脱硫组合工艺生产的调和汽油辛烷值基本不变。该组合工艺,实现FCC汽油馏分深度脱硫与溶剂循环使用优化操作。三、规模与投资(萃取精馏部分)萃取精馏装置年处理量50-100万吨, 设备总投资约2000万元。四、生产设备主设备为萃取精馏塔。FCC汽油预分馏塔(也可对催化分馏系统稳定塔进行适当改造);溶剂回收塔;相应的泵、储罐等。五、效益分析通过对FCC汽油分馏、萃取精馏,低硫汽油的收率在70-80%,其余馏分与重馏分一起进行加氢脱硫,使得加氢装置的处理能力(与全馏分加氢比)降低50%以上。同时汽油调和后,辛烷值基本不损失。六、合作方式技术转让或技术合作。
河北工业大学 2021-04-13
天然脂肪酸甲酯催化加氢技术
项目申请人所在研发团队多年来致力于绿色化学和工程研究,经过多年努力,已开发出一系列高活性的负载型金属催化剂及其衍生催化剂。 本项目针对天然脂肪酸甲酯研制具有很强的抗硫性能的新型高活性纳米金属镍和磷化镍催化剂,同时开发先进的固定床催化加氢反应技术来进行天然脂肪酸甲酯的加氢饱和研究,促进生产进步,减少污染,具有良好的工业化应用前景,不仅具有显著的经济效益,而且具有显著的社会和环保效益。与本
南京大学 2021-04-14
间二甲苯绝热硝化制备一硝基间二甲苯新技术
成果与项目的背景及主要用途: 间二甲苯经一硝化可制得 2,4-二甲基硝基苯和 2,6-二甲基硝基苯,再经还原 可分别得到 2,4-二甲基苯胺和 2,6-二甲基苯胺,广泛应用于染料、医药、橡胶助 剂及塑料等领域,是重要的有机中间体之一。目前的混酸常规硝化法,反应温度 低,耗水、耗能大,反应时间长,过程不易控制,废酸难处理。因此开发先进的 间二甲苯一硝化方法很重要。 本工艺首次采用间二甲苯绝热硝化制得硝基间二甲苯。绝热硝化反应开始后, 利用自己反应放出的热来提高物料的反应温度。虽然混酸浓度不断降低,但由于 反应温度的提高,因此仍能使混酸具有足够的硝化能力,从而保证了反应速度。 该法比常规混酸硝化优点多,如反应温度高,无需冷却水,耗能小,反应时间仅 为半小时,设备生产能力比常规硝化法提高至少 2 倍。所用设备仅为常规的硝化 及分离设备,无需特殊加工。硝化后废酸可经闪蒸后全部回用,减少了环境污染。 技术原理与工艺流程简介: 间二甲苯与混酸经良好搅拌混合后,快速绝热升温进行硝化反应,反应结束 后硝化分离得硝基物和高温废酸。硝基物供进一步还原,可以制备其它有机物或 中间体。高温废酸经闪蒸提浓可回收再利用。 技术水平及专利与获奖情况: 已完成成熟小试工艺,国内外技术领先。本技术可降低能耗 50~60%,收率 提高 5~10%,硝基物收率可大于 95%,二硝基物小于 6000ppm,原料消耗定额 降低 5~10%,设备生产能力提高约 2 倍。 应用前景分析及效益预测: 绝热硝化法不仅可服了常规硝化法的诸多不足,而且具有许多新优点。用本 技术生产一硝基间二甲苯,可使成本下降约 10%。按年产 600 吨计,可比常规 法净增利润 200 多万元。并可回收利用废酸,解决废酸污染问题。 应用领域:有机中间体。 技术转化条件(包括:原料、设备、厂房面积的要求及投资规模): 25天津大学科技成果选编 生产规模及产量:600 吨/年。 所需厂房面积:300m2。 主要设备:硝化锅、硝化分离器、硫酸高位槽、硝酸高位槽、混酸高位槽、 混酸配制罐、稀碱配制罐、稀碱高位槽、水洗及分离器、碱洗及分离器、闪蒸器、 真空泵。 主要原材料及来源:间二甲苯、硫酸、烧碱、硝酸,国内均有现货供应。 设备投资:110 万元。 合作方式及条件:面议。 
天津大学 2021-04-11
间二甲苯绝热硝化制备一硝基间二甲苯新技术
间二甲苯经一硝化可制得2,4-二甲基硝基苯和2,6-二甲基硝基苯,再经还原可分别得到2,4-二甲基苯胺和2,6-二甲基苯胺,广泛应用于染料、医药、橡胶助剂及塑料等领域,是重要的有机中间体之一。目前的混酸常规硝化法,反应温度低,耗水、耗能大,反应时间长,过程不易控制,废酸难处理。因此开发先进的间二甲苯一硝化方法很重要。本工艺首次采用间二甲苯绝热硝化制得硝基间二甲苯。绝热硝化反应开始后,利用自己反应放出的热来提高物料的反应温度。虽然混酸浓度不断降低,但由于反应温度的提高,因此仍能使混酸具有足够的硝化能力,从而保证了反应速度。该法比常规混酸硝化优点多,如反应温度高,无需冷却水,耗能小,反应时间仅为半小时,设备生产能力比常规硝化法提高至少2倍。所用设备仅为常规的硝化及分离设备,无需特殊加工。硝化后废酸可经闪蒸后全部回用,减少了环境污染。间二甲苯与混酸经良好搅拌混合后,快速绝热升温进行硝化反应,反应结束后硝化分离得硝基物和高温废酸。硝基物供进一步还原,可以制备其它有机物或中间体。高温废酸经闪蒸提浓可回收再利用。
天津大学 2023-05-10
一种苯加氢制环已烷用催化剂的制备方法及其产品和应用
本发明公开了一种苯加氢制环已烷用催化剂的制备方法,包括: 将钌盐按照一定比例溶于去离子水或乙醇溶液中,由此制得溶液 A; 将氧化石墨烯和碳纳米管中的至少一种物质分散均匀后,加入到所制 ·1091·得的溶液 A 中,然后搅拌均匀后得到溶液 B;称取化学还原剂并将其 配成水溶液,将化学还原剂的水溶液逐滴加入到溶液 B 中同时执行搅 拌,由此得到混浊液 C;将所得到的混浊液 C 执行离心分离以除去上 清液,底部沉淀加水混匀
华中科技大学 2021-04-14
在氧化铈负载钌纳米催化剂用于二氧化碳加氢反应的结构敏感性
首先制备了 CeO2 纳米线负载的 Ru 基单原子、纳米团簇(约 1.2 nm )和纳米颗粒(约 4.0 nm ),并用于催化常压 CO2 加氢反应。研究发现三种催化剂都表现出 98-100% 的甲烷选择性,但纳米团簇的反应活性高于单原子并远高于纳米颗粒。通过原位表征结合第一性原理计算,发现该催化剂上的 CO2 加氢反应经历 CO 中间体(即 CO 路径),其活性位点为 Ru-CeO2 界面处的 Ce3+-OH 位点和 Ru 位点,分别负责 CO2 解离和羰基中间体活化。从单原子到纳米团簇和纳米颗粒, SMSI 逐渐减弱,促进了吸附在 Ru 位点上羰基中间体的活化;氢溢流效应逐渐增强,不利于表面 H2O 分子的脱附。 SMSI 和氢溢流效应在纳米团簇上达到平衡,使催化剂在该粒径尺度下表现出最好的常压 CO2 加氢活性。
北京大学 2021-04-11
腈水解酶催化制备亚氨基二乙酸项目
亚氨基二乙酸(IDA)是生产除草剂草甘膦的重要中间体。它也被用于生产新型两性铬络合 品红染料、漂白活化剂、顺铂类抗癌药物等。目前生产亚氨基二乙酸主要有化学合成法和生物 合成法。利用高效、高酶活、稳定的产腈水解酶生产亚氨基二乙酸,符合绿色化学的发展方 向,有着化学方法无可比拟的优越性。本项目筛选到一株高效、高酶活、稳定的产腈水解酶的 菌株,一步水解得到所需的亚氨基二乙酸。 本项目通过筛选适合的菌株、对菌株发酵优化以及整个催化过程的优化,最后分离纯化得 到亚氨基二乙酸。整个反应过程条件温和、操作简单、无副产物产生。
华东理工大学 2021-04-11
首页 上一页 1 2
  • ...
  • 11 12 13
  • ...
  • 364 365 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1