高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
高、低有效氢碳比原料共混催化热解制取燃料的装置和方法
本发明公开了一种高、低有效氢碳比原料共混催化热解制取燃料的装置和方法,该装置包括预混器、两级螺旋进料器、马达、料仓、流化床热解器、旋风分离器、两级冷凝装置、焦炭仓、储油罐、储气罐、预热器。该方法能够利用该装置将高、低有效氢碳比的不同原料进行共混催化热解。本发明能够将有效氢碳比低的含碳固体废弃物廉价高效地转化为高品质的液体燃料,同时处理有效氢碳比高的塑料等固体废弃物,解决了目前有效氢碳比低的生物质等含碳固体废弃物转化困难,热解产物品质不高,选择性差,催化剂易结焦、失活快的问题。
东南大学 2021-04-14
一种同时控制电渣锭氢-氧含量的新渣系及其制备方法
(专利号:ZL 201310429320.4) 简介:本发明公开了一种同时控制电渣锭氢-氧含量的新渣系及其制备方法,属于电渣重熔渣系技术领域。该渣系成分及重量百分比为:CaF2:43~47%,CaO:18~22%,Al2O3:4~6%,MgO:8~12%,Ce2O3:14~16%,La2O3:4~6%。其制备步骤为:根据制备渣系组分及重量百分比要求按比例配置渣料,渣料为石灰石、白云石、萤石、铝矾土、氧化铈粉末和氧化镧粉末;将混合渣料在16
安徽工业大学 2021-01-12
.一种环戊酰亚胺催化加氢合成八氢环戊烷[C]吡咯的方法
八氢环戊烷[C]吡咯是一种重要的医药中间体,主要用来合成治 疗丙型肝炎的关键药物特拉匹韦(Telaprevir)及治疗糖尿病的药物格 列齐特(Gliclazide),八氢环戊烷[C]吡咯在医药工业中有着较大的需 求量,采用环保、经济的方法,大规模合成八氢环戊烷[C]吡咯有着 重要的意义。早期报道的八氢环戊烷[C]吡咯的合成方法是采用 LiAlH4 在四 氢呋喃溶液中还原环戊酰亚胺,八氢环戊烷[C]吡咯的收率可达 51%; 中国专利(CN2013106276
兰州大学 2021-04-14
一种光助铁酸铋活化过硫酸氢钾降解有机废水的方法
(专利号:ZL 201510181466.0) 简介:本发明公开了一种采用光助铁酸铋活化过硫酸氢钾降解有机废水的处理方法,属于污水处理技术领域。本发明中钙钛矿结构BiFeO3具有球状形貌,是在水热条件下通过加入一定量的表面活性剂制得,比表面积大,制得的BiFeO3本身即可在可见光照射下光催化降解有机污染物。本发明中将BiFeO3应用于活化过硫酸氢钾降解有机污染物中,在15min对甲基橙的降解率为94%,40min对甲基蓝的降解率为90%,
安徽工业大学 2021-01-12
利用304型不锈钢网基电分解水析氢、析氧催化电极
为电解水领域展示了一种以廉价的不锈钢网衍生出的能够在碱性条件下高效分解水的电极材料。通过将普通商用的304型柔性不锈钢网进行酸腐蚀剥离并在高温利用氨气以及磷化氢气体活化处理,分别制备出了性能媲美金属铂和氧化铱电极性能的阳极和阴极电极。这种电极具有以下优点:       (1)成本低廉:304型柔性不锈钢网每平方米售价40美元,而其他常用的非贵金属替代电极材料如镍网每平方米100美元,碳布每平方米875美元。金属铂和二氧化铱就更加昂贵得多。       (2)活性优异:得益于表面的腐蚀剥离增加的活性比表面积以及高温氨气或磷化氢气体的烧灼引入的氮或磷原子,制备的氮掺杂活化电极析氢活性与金属铂相近,磷掺杂活化电极析氧活性较二氧化铱高。电解水整体体系性能比传统组合金属铂-二氧化铱系统的超电势还要小。       (3)性能稳定:整个体系将近6天不间断工作时间之内性能未观察到任何衰减。
中山大学 2021-04-13
一种基于数据分析的掺氢天然气安全检测方法及系统
本发明涉及安全检测技术领域,具体为一种基于数据分析的掺氢天然气安全检测方法及系统,包括以下步骤:基于掺氢天然气输配管道中的光谱透射率数据,分析测量通道的光强变化趋势,计算光程对应的光谱透射变化量,筛选光程对应的光能量衰减特征,得到光谱衰减特征数据。本发明中,通过深入分析光谱透射率数据,提升光强变化和光能量衰减的测量精度,增强光谱衰减特征数据的准确性,结合短长光程透射信息和差异化氢气掺混比例的识别,优化光谱衰减曲线,提高测量稳定性,使用偏移模型动态修正光谱数据,精准分析泄漏气体动能与流动方向,提取泄漏点扩散路径,优化安全评估过程,提升风险预警的及时性和有效性。
南京工程学院 2021-01-12
一种环戊酰亚胺催化加氢合成八氢环戊烷[C]吡咯的方法
八氢环戊烷[C]吡咯是一种重要的医药中间体,主要用来合成治疗丙型肝炎的关键药物特拉匹韦(Telaprevir)及治疗糖尿病的药物格列齐特(Gliclazide),八氢环戊烷[C]吡咯在医药工业中有着较大的需求量,采用环保、经济的方法,大规模合成八氢环戊烷[C]吡咯有着重要的意义。早期报道的八氢环戊烷[C]吡咯的合成方法是采用LiAlH4在四氢呋喃溶液中还原环戊酰亚胺,八氢环戊烷[C]吡咯的收率可达51%;中国专利(CN201310627653.8)公开了一种采用NaBH4为还原剂、ZnCl2为促进剂、在适当溶剂中还原环戊酰亚胺合成八氢环戊烷[C]吡咯的方法。上述两种方法中,前者所用的还原剂LiAlH4是一种遇水易剧烈分解的化学试剂,在较大规模使用合成八氢环戊烷[C]吡咯时,存在不可忽视的安全隐患,同时,有较大量有害废水排放;后者所使用的NaBH4/ZnCl2还原体系,在实际工业生产中易产生大量的含硼、含锌工业废水,不符合环保、绿色化学要求。 成果亮点 本课题针对现有以环戊酰亚胺为原料合成八氢环戊烷[C]吡咯的方法的缺点而提供一种更加绿色环保、高效、经济的催化加氢合成八氢环戊烷[C]吡咯的方法。本课题发明了一种PtV/-Al2O3负载型催化剂,采用高压催化加氢反应实现了环戊酰亚胺高效催化加氢合成八氢环戊烷[C]吡咯。催化剂的制备方法简单、成本较低;催化加氢方法更加绿色环保,操作简单、易控制,易于工业化放大生产。
兰州大学 2021-01-12
抗脑缺血1类化学新药DBZ的开发
完成人简介:郑晓晖,西北大学教授,博士生导师,中草药现代化工程研究中心主任,西北大学深圳清华大学研究院共建"创新中药及天然药物研究"联合实验室主任,陕西省中医药管理局“中药复方效应成分分析”重点研究室主任,陕西新药技术开发中心特聘专家,九三学社中央促进技术创新工作委员会委员,九三学社陕西省委常委,陕西省九三学社教育文化专门委员会主任委员,九三学社西北大学主委,教育部“长江学者和创新团队发展计划”、“陕西省重点科技创新团队”团队带头人,入选国家百千万人才工程,授予“有突出贡献中青年专家”荣誉称号,享受国务院政府特殊津贴。 成果内容:丹参素冰片酯(DBZ)是课题组应用代谢物组学研究技术,采用HPLCMS、GCMS、GCFTIR、NMR等技术手段,在复方丹参方效应成分的基础上,依据传统中医药理论与“君使”对药的化合物设计方法,结合现代药物化学和药理学,设计、合成的一种治疗心脑血管疾病(抗脑缺血)的新药候选化合物。DBZ显著的抗脑缺血损伤活性,并从血管新生、神经炎症、氧化应激等方面深入全面地揭示了其多环节的作用机制,相关文章发表在药学领域国际权威期刊《英国药理学杂志》上。 DBZ具有易于制备、工艺可控、高效低毒等特点,是一个成药能力良好的化合物。现已完成大规模化的非光学活性DBZ生产工艺(20Kg/批),并建立光学活性DBZ拆分工艺,建立光学活性DBZ不对称合成工艺;同时开发出光学活性的右旋 DBZ 10公斤级合成工艺。建立了DBZ原料药质量标准、DBZ脂肪乳剂的工艺。 现已获中国发明专利授权4项, 1项PCT国际专利获58个国家及地区授权。 成果用途: 该项目研究内容及产品涉及治疗一种治疗心脑血管疾病(抗脑缺血)(1类化药)开发。 成果成熟度:中试产品阶段(已解决关键技术,需要合作进行产业化攻关) 转化方式:技术入股、合作推广,本项目欲融资8,000万元占股20%,按照国家 1 类新药的申报要求,展开研发、产业化的规范市场运作和资本运作。 成果知识产权情况 专利号 专利名称 专利状态 ZL 201410175950.8 一种混旋丹参素冰片酯的合成方法 授权 ZL 201310470979.4 一种丹参素冰片酯的工业化合成方法 授权 ZL200910023010.6 取代的苯甲酸衍生物及其合成方法和用途 授权 ZL200610042787.3  β-(3,4-二羟基苯基)-α-羟基丙酸冰片酯、其合成方法和用途 授权 PCT/CN2007/001550 取代β苯基α羟基丙酸衍生物、其合成方法和用途 授权
西北大学 2021-05-11
电化学对制革印染废水处理技术
成果描述:在工业废水中含有树脂、加脂剂、染料、栲胶等难降解物质,是生化处理的难点,针对这些难点,生化处理成为现在最理想的方法。目前,随着对环境中污染物指标要求的数量增加和污染值的降低,不少企业单独处理或污水厂集中处理后的废水部分指标达不到环保要求。新增设施成本高也难以操作。改成果是采用电化学方法,对废水出口进行进一步处理,到达排放要求。市场前景分析:制革工业,清洁化改造与同类成果相比的优势分析:COD降低0~90% NH3-N降低0~90% 色度降低0~90% 国内领先
四川大学 2021-04-10
硬果壳化学连续活化法制备粒状活性炭
活性炭是现代化学工业,石油工业,食品工业,医药工业,饮用水处理等行业不可缺少的处理吸附,脱色,净化剂,应用范围十分广泛,尤以粒状活性炭最为重要,世界上许多国家和地区都十分重视它。在日本,丹麦,瑞典,美国等发达国家研究,生产应用活性炭的历史近百年;在中国虽然起步较晚,但在应用硬果壳制备活性炭的生产工艺方面有较大的成功,先后有采用核桃壳,椰子壳,棕榈壳,桃核,杏仁壳及木屑等为原料来制备粒状或粉状活性炭,由硬果壳制备的活性炭均为粒状,可再生重复使用,应用价值大;由木屑制备的粒状活性炭,生产成本较低,一般为一次性使用,不便于再生。活性炭生产方法可分为物理活化法和化学活化法两大类,各有优缺点,但化学活化法由于活化剂种类及浓度的不同而使活性炭的孔径大小,长短等主要技术指标有较大的差异,人们通过控制选择活化剂,活化剂浓度,PH值大小;活化温度高低等条件来达到制备出不同规格型号的粒状活性炭,以供不同用途选用。
武汉工程大学 2021-04-11
首页 上一页 1 2
  • ...
  • 52 53 54
  • ...
  • 81 82 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1