高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
高砷锑金精矿矿浆电解新工艺
高砷锑金精矿矿浆电解新工艺及成套装置,一步制得 98%以上的金属锑,有效解决了锑、砷选择性分离难题;发明了 12 m 3 栅型网状电极矿浆电解槽,阳极面积由传统棒状石墨阳极的 20 m 2 提高至 110 m 2 ,电流强度提高到 12000 A,显著增加了单位槽体积的物料处理能力,并有效解决了传统火法工艺的“三废”污染问题,实现了锑的清洁冶金,是替代传统锑火法冶炼的优选技术。2015 年和有关企业合作建成的“年处理 5000t 高砷锑金精矿矿浆电解示范工程”,取得了锑浸出率>99% (回收率 98.5%),砷浸出率<0.5%,阴极锑含锑>98%、含砷<0.1%的优异指标, 金全部富集在矿浆电解渣中,消除了砷、硫污染。
北京科技大学 2021-04-13
杀虫剂地亚农绿色生产工艺
项目简介: 二嗪磷即地亚农,是一种广谱、高效、中低毒有机磷杀虫杀螨剂,还广泛应用于兽药和卫生用杀虫喷雾剂,是替代高毒杀虫剂的主要品种之一。目前世界产量约 2-3 万吨/年,中国市场刚起步。 南开大学实现了原料异丁腈的国产化,在二嗪磷生产技术上取得突破性成果,异丁腈经甲氧基化、氨化、中和、环化制得羟基嘧啶,总收率达 95%以上,羟基嘧啶与 O,O-二乙基硫代磷酰氯合成二嗪磷的收率达到 95%以上,原药含量达 95%以上;生产工艺达到国际先进水平,特点是:乙酰乙酸乙酯或甲酯消耗低;合成采用连续自动化控制;以异丁腈合成羟基嘧啶的过程基本无三废;二嗪磷原药中 S-TEPP的含量低于 0.2%,达到国际标准。所得二嗪磷原药不需加任何稳定剂就能稳定存在;生产成本低,设备投资少,生产效率高。已获发明专利授权。可提供中试生产技术。 地亚农主要用于水稻、棉花、果树、蔬菜、甘蔗、玉米、烟草、马铃薯等作物,防治刺吸式口器害虫和食叶害虫(如磷翅目、双翅目幼虫、蚜虫、叶蝉、飞虱、蓟马、介壳虫、十二八星瓢虫等),对螨卵也有一定杀伤效果。小麦、玉米、高梁、花生等作拌种,可防治蝼蛄、蛴螬等土壤害虫。颗粒剂灌心叶,可防治玉米螟。 工艺技术特点 南开大学元素所对地亚农的制备进行了深入细致的研究,首先,对异丁腈的合成进行了研究,并已实现了异丁腈的国产化,解决了异丁腈依赖进口,价格昂贵的问题,为地亚农生产奠定基础;其次,从理论基础出发,对合成地亚农的各步反应进行了反应机理及动力学的研究。近来,我们在地亚农的生产技术上起得突破性的成果,同样以异丁腈为起始原料,经脒化、环化、缩合三步反应合成地亚农。
南开大学 2021-04-13
厌氧同时脱氮除硫新工艺
研究方向:水资源与水污染控制工程与技术、研究方向包括高浓度有机废水和难降解有机物废水、含高氮高硫废水的厌氧和/或好氧生物处理、膜生物反应器、水中营养物氮、磷等的处理、微污染水源的生态修复及微污染水源的饮用水处理。 项目简介: 很多高浓度有机废水(如糖蜜酒精废水、味精废水、抗生素废水、磺胺制药废水等)同时含有高浓度硫酸盐和高浓度还原性氮(有机氮和/或氨氮),使得厌氧生物处理复杂化:①硫酸盐还原菌与产甲烷菌竞争基质(乙酸、H2等),②硫酸盐还原作用的产物硫化氢浓度很高时,会引起产甲烷菌活性的降低,③有机氮氨化后产生大量氨氮,抑制厌氧细菌活性,并给后续处理工艺带来脱氮要求。厌氧同时脱氮除硫新工艺的提出目的就是在厌氧处理同时含高硫酸盐和高还原性氮有机废水(简称高氮高硫废水)时创造适当条件,在厌氧处理阶段,把有机氮和氨氮转化为氮气,把硫酸盐转化为单质硫,同时降解部分有机物。这种新工艺能够消除硫化氢对厌氧工艺的影响,同时免除后续工艺脱氮的负担,从而为高氮高硫废水的处理开辟高效低耗的新途径。利用厌氧氨氧化菌与硫酸盐还原菌之间的耦合作用处理高氮高硫废水。 
南开大学 2021-04-13
膜法中成药制备新工艺技术
本成果采用陶瓷超微滤膜、纳滤膜等分离技术的单项或者集成设计方法,替代中药传统的醇沉工艺和多效蒸发工艺,实现中药组分的纯化和浓缩。关键之一在于根据中药浸提液的构成,优化设计和生产陶瓷膜元件,优选必要的高分子超滤膜或者纳滤膜。所生产的膜分离装置采用了多项专利技术,能提高有效组分得率和产品液的澄清度,降低原材料成本,高效节能、显著降低废液排放量、消除溶剂对环境的污染。 专利情况: 成熟度:量产 合作方式:技术服务 创新要点:采用陶瓷超微滤膜、纳滤膜等分离技术替代传统的醇沉发,不但减少了药物有效成分损失、提高产品质量,而且缩短了生产周期、降低生产成本,并易于工业化放大。 技术指标:本技术具有我国资源特色,在国内外均属首创,形成了具有我国自主知识产权的成套技术与装备。可根据中药厂需要,提供不同提取工艺及装备,该成果已有20多个工业化成功应用案例。例如在敖东制药公司,采用陶瓷膜技术进行血符口服液的生产,与传统的醇沉工艺相比,节约乙醇消耗70%以上,生产周期节约30%。
南京工业大学 2021-01-12
造纸废水近零排放膜集成工艺
造纸工业在我国国民经济中占有重要地位,但属于高物耗、高能耗的污染大户,废水排放量占全国工业废水排放量的17%以上。实现废水综合治理,减少尾水排放量,已成为造纸行业发展迫切。本项目技术采用膜集成技术实现了造纸尾水的净化处理,实现了水的分级回用,项目已经建成万吨级工程2项,经济效益好。 专利情况:在申请3项;已授权3项, 成熟度:量产 合作方式:技术入股、技术转让、技术服务 创新要点: 1)高效预处理技术实现尾水杂质深度净化; 2)双膜法尾水的脱盐和降COD技术; 3)低成本浓盐水处理技术。 技术指标:水回收率可以实现95%,85%和75%等不同工艺,经济性好。其中,回用95%时,水处理成本低于5元/吨水。本工艺已建成了4万吨/年和1万吨/年等应用示范工程。
南京工业大学 2021-01-12
特浓豆浆工艺和连续生产技术
豆浆作为传统东方食品,具有深厚的群众基础,市场前景广阔。但我国豆制 品行业整体技术水平落后,产品品质、生产工艺和装备机械均有较大的上升空间; 日本技术虽较我国先进,但也仅适用于中小规模生产。本技术以熟浆工艺(带渣 煮浆)为基础,确立了蛋白提取率高、风味损失少、豆腥味可控的豆浆生产工艺, 开发了连续化的熟制技术、高通量分级分离技术、富含泡沫液相体系的脱气浓缩技术等,解决了长期以来豆浆产业的多项技术难题,为高品质豆浆的推广奠定基础。 创新要点 大豆无需浸泡、全程连续化生产、单线处理能力大;产品口感醇厚;蛋白质含量是普通型豆浆行业标准的 1.5 倍以上,维生素保留率高于同行业 5%,不饱和脂肪酸占脂肪比例较牛奶高 40%,铁质超过牛奶 4 倍以上,致敏性远低于牛奶;高浓度豆浆既可以作为豆浆饮品直接享用,也可以作为星巴克等餐饮行业时尚饮品的牛奶基料替代品。
江南大学 2021-04-11
复杂型面轴类零精密塑性成形工艺
采用塑性成形工艺成形具有复杂特征的轴类零件(如螺纹、花键、蜗杆、丝杠),相比于传统的切削加工工艺,零件精度高、机械性能好、生产率高、材料利用率高,是一种高效精确体积成形技术。根据不同零件特征发展一系类新工艺:将中高频感应加热同螺纹、花键滚压成形相结合,解决了高强度钢螺纹、花键滚压成形问题;复合振动的复杂齿形滚轧、挤压工艺有效改善了成形零件质量;提出了螺纹齿高大、变形量大的长螺纹(丝杠)零件塑性成形方法;发展可锻轧一体化蜗杆的精密塑性成形工艺等。为之配套的工装、伺服直驱设备体系与相关技术完备。
西安交通大学 2021-04-11
复杂阀体多向挤压/锻造成形工艺及装备
研究阀体零件多向挤压成形工艺过程中材料流动特征,指出加载路径对材料流动的影响规律,优化加载路径,有效避免成形缺陷;已成功研发了铝合金、铜合金以及黑色金属的半固态成形工艺,成形零件强度、硬度显著提高,形成了复杂阀体半固态挤压铸造、半固态多向锻造工艺体系;研制了实现 6 个加载方向数控成形液压机,利用机架及特制液压缸有效减少了液压系统安装空间。
西安交通大学 2021-04-11
监测植物花芽分化或开花过程中温度变化的活体成像方法
本发明公开了一种监测植物花芽分化或开花过程中温度变化的活体成像方法。本发明提供的方法,包括如下步骤:1)用红外线非接触式热像仪采集活体待测植物的花芽或花部器官图像;2)根据步骤1)得到的采集图像,得到所述活体待测植物的花芽或花部器官的不同位点的温度,从而实现植物花芽分化或者开花的生热效应的监测。本发明的实验证明,本发明的方法具有以下优点:1)操作简单,快速:省略了植物观测中取样、分离等前续试验分析步骤;2)成像效果好:可不受雨雪天气等外界环境干扰下,对植物花部器官生热进行活体观测,温差区分度在0.1摄氏度。
北京林业大学 2021-02-01
瓦斯爆炸早期抑爆微观化学与物理过程的耦合作用机理
本项目针对矿井瓦斯爆炸早期探测与抑制的技术难题,采用实验与光谱分析方法,得到了瓦斯爆炸感应器内自由基变化的光学特征及其辨识方法,并以此为基础,利用量子化学软件分析瓦斯爆炸微观动力学过程,得出了瓦斯爆炸感应器内的关键基元反应、自由基和其围观动力学参数,以及微观反应与宏观现象的关系,为瓦斯爆炸抑爆技术提供理论支持,受到国内相关研究人员的普遍认可。项目成果在国内外重要期刊发表学术论文13篇(9篇已刊出,4篇已录用),其中SCI源刊1篇,EI源刊5篇(2篇已收录),CA收录2篇,CSCD收录及中文核心期刊5篇,完成硕士学位论文2篇。
中国人民警察大学 2021-05-03
首页 上一页 1 2
  • ...
  • 50 51 52
  • ...
  • 90 91 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1