高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
新型拓扑材料外尔半导体的实验研究
近日,中国科大合肥微尺度物质科学国家研究中心国际功能材料量子设计中心和物理系中科院强耦合量子材料物理重点实验室曾长淦教授研究组与王征飞教授研究组实验与理论合作,首次在单元素半导体碲中发现了由外尔费米子主导的手性反常现象以及以磁场对数为周期的量子振荡,成功将外尔物理拓展到半导体体系。该研究成果在线发表在《Proceedings of the Natio
中国科学技术大学 2021-01-12
半导体光刻胶成膜树脂制备技术
1.痛点问题 光刻胶作为集成电路制备中不可或缺的一部分,已成为国家的战略资源之一。半导体光刻胶的核心在于成膜树脂,受限于研发难度大、专利壁垒高、资金投入多、准入门槛高,目前国内企业尚难以突破KrF胶(248nm)或ArF胶(193nm),而EUV胶完全不能自主供给。 2.解决方案 本项技术采用了国际最前沿的纳米氧化物团簇材料的工艺路线,可以实现单2nm小分子的光刻胶成膜树脂材料,攻克了材料合成和纳米材料提纯的难题,可满足目前半导体3nm制程节点的技术要求,RLS分辨率、边缘粗糙度、灵敏度三项关键性能指标优异,其曝光剂量远低于Intel公司提出的20mJ/cm2的成本线。此外,本项技术具有多种半导体光刻胶兼容性,可以生产248nm和193nm光源的半导体光刻胶成膜树脂,以及电子束半导体掩膜用光刻胶成膜树脂,具有广阔的技术替代优势和市场应用前景。 3.合作需求 本项技术已设立衍生企业,位于江苏常州的3000m2研发生产中心正在建设中。 1)融资需求:本轮天使轮融资6000万元。 2)资源对接需求:集成电路芯片制造、掩膜板生产企业,地方政府等。
清华大学 2022-07-12
半导体集成电路生产工艺监测设备
CSM4A系列多功能C-V测试系统,经国家“七五”、“八五”两届重点科技攻关,已在我校研制成功,并被多个半导体集成电路生产厂家和研究所使用。该项目由陈光遂教授主持完成。原电子工业部鉴定认为:该C-V测试系统具备八项测试功能,数据可靠,实用性强,人机界面良好。总体水平已达到九十年代国际先进水平,并有独创性,可以替代进口设备。主要测试功能有:MOS高频CV,M
西安交通大学 2021-01-12
酰亚胺基有机半导体领域取得重要进展
NDI聚合物现已经成为最成功的N-型高分子半导体,取得了极其优异的晶体管性能并保持着多项全聚合物电池的效率记录。郭旭岗同时深入研究了酰亚胺单体家族的另外一个重要成员:双噻吩酰亚胺(Bithiophene imide, BTI),并构建了一系列基于BTI的聚合物半导体(J. Am. Chem. Soc. 2011,133,1405;J. Am. Chem. Soc. 2012,134, 18427;Adv. Mater. 2012,24, 2242; Nature Photonics 2013,7,825;J. Am. Chem. Soc. 2014,136,16345;J. Am. Chem. Soc. 2015,137,12565)。与NDI和PDI相比,BTI具有更高的化学活性和大幅度减小的位阻,从而提供了一个前所未有的机会对其结构进行拓展优化。在前期工作中,郭旭岗团队利用稠环策略成功合成了一系列(半)梯型有机半导体,并在晶体管和全聚合物电池中取得了可比于NDI和PDI聚合物的器件性能(Angew. Chem. Int. Ed. 2017, 56, 9924; Angew. Chem. Int. Ed. 2017, 56, 15304; J. Am. Chem. Soc. 2018,140,6095.)。但是,噻吩相对于苯环更富有电子,在一定程度上减弱了半导体的电子亲和力。因此通过拉电子基团功能化BTI不仅会产生更强的电子受体单体,同时还能解决NDI和PDI结构上的缺陷。基于此,郭旭岗团队克服了合成上的挑战,成功制备出新颖的氟取代的酰亚胺及其聚合物半导体。理论计算表明,相对于没有氟的单体f-BTI2,氟取代的单体f-FBTI2表现出更低的能级,有助于提升聚合物的N-型性能。 相比于f-BTI2-T和之前报道的s-BTI2-FT和f-BTI2-FT的全聚合物电池,以f-FBTI2-F为电子受体材料的电池实现了性能的巨大提升,能量转化效率达到8.1%(图2),同时实现了高达1.05V的开路电压值和低至0.53eV的能量损失。与NDI和PDI有着不同的结构和电子特性的新型受体单体f-FBTI2的出现将衍生出更多高性能N-型聚合物,为发展高效的全聚合物电池提供了全新的材料体系。
南方科技大学 2021-04-13
一种氦氖双频激光器频差产生和赋值方法
1. 痛点问题 双频激光干涉仪以双频激光器作光源。国内外,都是在氦氖激光管上加磁场,磁场和原子相互作用(塞曼效应),使氦氖激光器输出双频,这就是激光教科书中的塞曼效应双频激光器,常简称为双频激光器。国内外尝试用半导体激光器和固体微片激光器的努力都没有成功。塞曼效应双频激光器的缺点是双频的间隔(频差)小,且光子电场振动为圆偏振,前者影响干涉仪测量速度,后者带来几纳米十几纳米的非线性误差,这就是塞曼效应双频激光器的天花板。本项目课题组曾经尝试用晶体石英,外加力的应力双折射使氦氖激光器产生双频,但其组装方式等不够理想,稳定性需提高,产品化困难。 2. 解决方案 鉴于塞曼效应双频激光器性能提高遇到的瓶颈,本项目提供一种用激光内雕技术使激光器输出频率差,其赋值精确,装配不带来不稳定。本项目虽然是氦氖双频激光器制造过程中的一个工艺或物理过程,但在精密测量领域意义重大,影响深远。 合作需求 寻求本领域合适的合作伙伴,把这种采用新工艺的双频激光器装于干涉仪,并把这种双频激光干涉仪推向市场。
清华大学 2022-03-22
基于硅基外腔芯片的窄线宽连续调频激光器
1. 痛点问题 激光雷达在自动驾驶等领域有重要应用。基于调频连续波技术的激光雷达(FMCW Lidar)有着探测距离远、抗干扰和同时测速等优势,被认为是最具应用潜力的激光雷达。激光光源是FMCW激光雷达的核心器件之一,FMCW光源的调频非线性会严重影响激光雷达的分辨率,导致有效工作距离缩短,阻碍激光雷达性能的提升。 2. 解决方案 本成果预期解决目前调频连续波激光雷达(FMCW Lidar)中光源调频非线性的问题。本成果提出一种基于硅基外腔芯片的窄线宽激光器,通过无源硅基外腔芯片反射波长中心频率和反射相位的联合调谐,可以实现高线性的激光输出频率调谐,其原理架构与和实验验证结果如图1所示。从而突破了传统FMCW光源直接通过电流调制进行调频导致的非线性限制,直接产生高线性连续调频光信号。 合作需求 1、需要融资1800~2000万元,完成研发实验室及一期生产线的建设,以及前期工程样品的开发; 2、需要800平米左右万级超净厂房及配套办公面积,希望有兴趣的地区或者园区能够提供优惠的政策与支持; 3、欢迎FMCW激光雷达厂家及其它对FMCW光源有需求的客户合作,联合测试、共同开发; 4、欢迎在硅光设计、光有源、无源耦合及自动化生产等方面的技术、管理专家加盟,共同打造激光雷达的中国光芯,共创美好未来。
清华大学 2022-03-28
一种用于光纤激光器的包层光剥离器及其制作方法
本发明公开了一种用于光纤激光器的包层光剥离器及其制作方 法,该剥离器包括包层光纤、多段光栅和冷却管套,其制作方法是在 裸露的光纤内包层外表面上涂覆折射率大于或等于内包层折射率的紫 外光刻胶,然后在紫外光刻胶上刻蚀多段光栅,通过多段光栅的衍射 将内包层内残余光剥离出来;将制作好的多段光栅套在金属管中,并 用密封套密封,该金属管壁铺满吸热材料,将剥离出的内包层光吸收, 通入流通的冷却水将产生的热量带走。本发明通过采用不同
华中科技大学 2021-04-14
一种用于光纤激光器的包层光剥离器及其制作方法
本发明公开了一种用于光纤激光器的包层光剥离器及其制作方 法,该剥离器包括包层光纤、多段光栅和冷却管套,其制作方法是在 裸露的光纤内包层外表面上涂覆折射率大于或等于内包层折射率的紫 外光刻胶,然后在紫外光刻胶上刻蚀多段光栅,通过多段光栅的衍射 将内包层内残余光剥离出来;将制作好的多段光栅套在金属管中,并 用密封套密封,该金属管壁铺满吸热材料,将剥离出的内包层光吸收, 通入流通的冷却水将产生的热量带走。本发明通过采用不同结构的光 栅来调整包层光的透过率,达到高效均匀剥离的目的,避免剥离器出现 过热点,保
华中科技大学 2021-04-14
浙江博蓝特半导体科技股份有限公司研发第三代半导体材料
浙江博蓝特半导体科技股份有限公司致力于以碳化硅为主的第三代半导体材料研究项目,围绕碳化硅晶体生长技术及碳化硅衬底加工技术进行研发及产业化。公司优势:国家高新技术企业,拥有省级企业研究院、省级高新技术研发中心、省级企业技术中心、院士工作站等研发平台,并与浙江师范大学、湖南大学、中科院宁波材料所分别建立联合实验室,致力于第三代半导体材料的研发及产业化。点击上方按钮联系科转云平台进行沟通对接!
中国科学院大学 2021-04-10
一种提高激光转盘斩波调 Q 性能的装置及调 Q 激光器
本发明公开了一种提高激光转盘斩波调 Q 性能的装置及包含该 装置的调 Q 激光器,装置包括位于谐振腔内部或外部的伽利略望远镜 装置以及位于谐振腔内部用于对压缩后的激光光束进行调 Q 的转盘斩 波调 Q 器件。激光介质为一个时,第一伽利略式望远镜装置位于谐振 腔之内,用于压缩激光光束直径,以减少 Q 开关时间增强调 Q 效果; 激光介质大于一个时,第二伽利略式望远镜装置位于谐振腔之外,由 各路激光谐振腔共用,用于将多路
华中科技大学 2021-04-14
首页 上一页 1 2
  • ...
  • 10 11 12
  • ...
  • 376 377 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1