高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种顺应挠度曲线的旋转轴系的轴承孔系布置方法
本发明公开了一种旋转轴系中轴承孔系的布置方法,通过对支 撑旋转轴系各轴承的轴承孔轴线的位置和偏转角度进行布置,使单个 轴承沿周向同一位置、轴向的不同位置所受应力或压强基本一致,从 而实现对旋转轴系的支撑并消除轴系轴承自身的偏磨,其特征在于, 所述各轴承按照顺应轴承的轴承孔型心处的轴系挠度曲线安装布置。 本发明的方法针对轴承孔有 3 个或 3 个以上、轴系的挠度曲线在轴承 孔型心处的挠度值和转角值超过制造公差和回转使用公差的工作状况 的旋转轴系,在稳定负载的条件
华中科技大学 2021-04-14
一种流量可调的可拆卸螺旋式迷宫灌水器
本发明公开了一种流量可调的可拆卸螺旋式迷宫流道灌水器,其特征在于:它包括主体灌水器,螺纹连接在所述主体灌水器外部的出水环腔,以及螺纹连接在所述主体灌水器两端的毛管;在所述主体灌水器的外壁上设有螺旋式迷宫流道和外螺纹;在靠近所述主体灌水器的一端的外壁上开设有进水口,所述进水口连通所述主体灌水器的内腔和所述螺旋式迷宫流道;在所述出水环腔的外壁上设有出水口,所述出水口连通所述主体灌水器的所述螺旋式迷宫流道。本发明的主体灌水器和出水环腔能够方便的旋合或分离,实现出水口处的流量可调,方便主体灌水器清洗和检修,提高整个灌水器的抗堵塞性能和重复利用性。
中国农业大学 2021-04-11
一种测量电纺丝工艺中射流螺旋段流速的方法
本发明公开了一种电纺丝过程中射流螺旋段流速的测量方法,包括如下步骤:(1)在电纺丝射流螺旋段下方一定高度处的水平面上设置一匀速运动的基板,获得单根纤维的轨迹,并记录基板的运动速度大小 V0;(2)对获得的轨迹进行测量,得到轨迹上最高点与最低点间的纵向距离 l1 和轨迹上任意两个最高点或两个最低点间的横向距离 l0,进而计算出射流螺旋段的流速 Vm;(3)调节基板为各种不同高度水平面,重复上述步骤(1)和步骤(2),分别计算得到电纺丝过程中射流螺旋段在不同高度水平面处的流速大小,即可获得电纺丝流速在空
华中科技大学 2021-01-12
XM-855A带数字标识螺旋器及膜性蜗管模型
XM-855A螺旋器及膜性蜗管模型(带数字标识)   XM-855A带数字标识螺旋器及膜性蜗管模型放大350倍,可拆分为5部件,显示螺旋器及膜性蜗管三壁的立体微细结构,模型的内侧端为骨性螺旋板,相当于螺旋缘处的断面,可见其中的骨质,表面肥厚的骨膜及穿通骨质的听神经纤维束,模型的另一端为螺旋韧带,内含多数血管,由侧面看可见前庭膜起于螺旋缘上面的骨膜,止于螺旋韧带的上方。将前庭膜取下观察,可见它由上面的间皮,中间的结缔组织及下面的上皮所成,膜性蜗管的外壁为螺旋韧带,内面附有单层立方上皮。 尺寸:放大350倍,47.5×18×32.5cm 材质:PVC材料
上海欣曼科教设备有限公司 2021-08-23
石墨烯体系单原子缺陷研究进展发表
石墨烯中电子除了自旋这个内秉自由度,还有子格赝自旋和谷赝自旋自由度。石墨烯中电子的多自由度给石墨烯带来了很多新奇的物理性质。单原子缺陷是材料体系中最简单的缺陷形式,可以作为一种模型体系来帮助了解缺陷对材料性质的影响和调控。物理学系何林教授课题组长期致力于研究石墨烯中的单原子缺陷,发现缺陷可对石墨烯中自旋、子格赝自旋和谷赝自旋相关的电学性质产生深刻影响。例如,他们利用扫描隧道显微镜(STM)首次证实石墨烯中单原子空位缺陷存在局域自旋磁矩,并在原子尺度上实现了对其自旋磁矩调控,实现了三种自旋量子态;观测到石墨烯中单原子缺陷引入的对称性破缺态,并系统地测量了缺陷附近谷极化和谷依赖的自旋极化在实空间的分布情况。 石墨烯中电子的子格赝自旋来自于其六角晶格结构,有A和B两套子格,因此波函数数学形式上类似于自旋。对于电子自旋有很多有意思的可观测物理现象,那么对应石墨烯中的子格赝自旋是否有可观测的物理现象呢?带着这一问题,何林教授课题组开展了深入研究。他们发现石墨烯中的单原子缺陷可以使准粒子在石墨烯手性不同的两个谷之间发生弹性散射,并伴随着子格赝自旋的旋转,在缺陷附近产生一个原子尺度的子格赝自旋涡旋,而赝自旋在涡旋(单原子缺陷)的绕数直接反映了体系的Berry相位(图1)。通常来说,贝利相位的测量需要借助于外加磁场,因为磁场可以驱动准粒子沿闭合的轨迹绝热运动,所以这一的结果提供了一个简单的方法测量不同层石墨烯Berry相位的方法。何林教授课题组利用STM测量单原子缺陷引起的谷间散射形成的电荷密度波振荡,证明电荷密度波振荡在实空间中增加的额外波前条纹数直接反映了子格赝自旋在涡旋的绕数,从而可直接测量不同层石墨烯的Berry相位。最近的工作中,他们对双层石墨烯进行了详细的研究,并将相关结果推广到多层石墨烯体系。进一步他们还研究了相同和相反绕数的子格赝自旋涡旋的量子干涉。上述结果直接证明了子格赝自旋有很多丰富有趣的物理现象亟待深入研究,也为子格赝自旋物理提供了全新的研究思路。
北京师范大学 2021-02-01
单动力源多负载分时传动系统
本项目研究了单个动力源分时段驱动多个负载的传动方案,采用电磁控制技术设计了分体式电磁联轴器,通过径向移动活动半联轴器,实现其与不同位置的多个固定半联轴器分时段接合。将该分体式电磁联轴器应用于多层升降横移式立体车库各层车位的升降传动装置,能够实现同一层的多个车位共用一台升降电机,电机分时段驱动各个车位的升降动作,减少电机数量,提高电机的使用率;多个车位采用一台升降电机驱动,能够方便的在电机驱动部分安装配重块,以减小电机功率、节约能源。本项目获批发明专利3项。
辽宁工程技术大学 2021-05-04
石墨烯体系单原子缺陷研究进展发表
石墨烯中电子除了自旋这个内秉自由度,还有子格赝自旋和谷赝自旋自由度。石墨烯中电子的多自由度给石墨烯带来了很多新奇的物理性质。单原子缺陷是材料体系中最简单的缺陷形式,可以作为一种模型体系来帮助了解缺陷对材料性质的影响和调控。物理学系何林教授课题组长期致力于研究石墨烯中的单原子缺陷,发现缺陷可对石墨烯中自旋、子格赝自旋和谷赝自旋相关的电学性质产生深刻影响。例如,他们利用扫描隧道显微镜(STM)首次证实石墨烯中单原子空位缺陷存在局域自旋磁矩,并在原子尺度上实现了对其自旋磁矩调控,实现了三种自旋量子态;观测到石墨烯中单原子缺陷引入的对称性破缺态,并系统地测量了缺陷附近谷极化和谷依赖的自旋极化在实空间的分布情况。 石墨烯中电子的子格赝自旋来自于其六角晶格结构,有A和B两套子格,因此波函数数学形式上类似于自旋。对于电子自旋有很多有意思的可观测物理现象,那么对应石墨烯中的子格赝自旋是否有可观测的物理现象呢?带着这一问题,何林教授课题组开展了深入研究。他们发现石墨烯中的单原子缺陷可以使准粒子在石墨烯手性不同的两个谷之间发生弹性散射,并伴随着子格赝自旋的旋转,在缺陷附近产生一个原子尺度的子格赝自旋涡旋,而赝自旋在涡旋(单原子缺陷)的绕数直接反映了体系的Berry相位(图1)。通常来说,贝利相位的测量需要借助于外加磁场,因为磁场可以驱动准粒子沿闭合的轨迹绝热运动,所以这一的结果提供了一个简单的方法测量不同层石墨烯Berry相位的方法。何林教授课题组利用STM测量单原子缺陷引起的谷间散射形成的电荷密度波振荡,证明电荷密度波振荡在实空间中增加的额外波前条纹数直接反映了子格赝自旋在涡旋的绕数,从而可直接测量不同层石墨烯的Berry相位。最近的工作中,他们对双层石墨烯进行了详细的研究,并将相关结果推广到多层石墨烯体系。进一步他们还研究了相同和相反绕数的子格赝自旋涡旋的量子干涉。上述结果直接证明了子格赝自旋有很多丰富有趣的物理现象亟待深入研究,也为子格赝自旋物理提供了全新的研究思路。
北京师范大学 2021-04-10
锂离子电池隔膜干法单拉制造技术
  本项目系统全面地研究了采用熔融挤出/热处理/单轴拉伸法(MEAUS)制备锂电池用聚烯烃微孔隔膜的原理,成功地设计制造了国内第一条熔融挤出/热处理/单轴拉伸(MEAUS)法制备锂电池用聚烯烃微孔隔膜的工业化生产线。在此基础上,研发成功了锂离子动力电池PP/PE两层或三层复合隔膜产业化技术。拥有国内唯一动力锂电池隔膜产品的制造技术。
四川大学 2021-04-11
单分子晶体管和分子诊断技术
项目采用光致异构化合物通过酰胺共价键链接于具有纳米间隙阵列的二维单层石墨烯的间隙形成光致异构化合物-石墨烯单分子器件;采用生物分子链接构建了单分子生物传感器;利用有机半导体小分子构建了性能可靠的2-3纳米单分子场效应晶体管。当单个光致异构化合物被桥接于具有纳米间隙阵列的二维单层石墨烯之间的纳米间隙时,它们具有可逆的光控开关功能和电控开关功能;当生物分子桥连石墨烯电极时,它们具有单分子DNA精准测序的功能;单分子场效应晶体管目前是国际上最小的晶体管,有望为器件微小化产生芯片集成核心技术。
北京大学 2021-02-01
负载型金属单原子模型催化剂
若将氧化物变薄到乃至单层,其表面自由能受基底金属的调制会向金属表面自由能靠近(化学势的混合),此时沉积在薄层氧化物上的金属就有可能处于高分散状态。研究人员在 Cu(110) 单晶表面生长单层 CuO 薄膜,再沉积铂 (Pt) 金属原子,得到 400 K 以上热稳定的 Pt 单原子模型催化剂。若将氧化物层厚度增加,相同沉积量的 Pt 原子则在室温下便会团聚,形成金属团簇。这种负载型金属单原子模型催化体系的制备方法简单易行,不需要通过吸附分子或者嵌入晶格来稳定金属单原子。
北京大学 2021-04-11
首页 上一页 1 2
  • ...
  • 13 14 15
  • ...
  • 32 33 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1