高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
酶法拆分生产D-泛酸技术
D-泛解酸内酯是D-泛酸钙与D-泛醇的重要手性中间体。D-泛酸作为一种重要的药物、食品添加剂和饲料添加剂,用途广,市场大,目前全球D-泛酸钙消费量大约17000t/a,欧美各国是D-泛酸钙的主要消费市场,其中美国约3200t/a、欧洲约2800t/a、亚洲约2500t/a、拉美等地区约500t/a。D-泛酸钙在全球市场呈现平稳增长态势,自然年增长率约5%。市场分析,泛酸钙作为饲料添加剂其销量将稳步增长,而它作为抑郁症的辅助治疗剂以及风湿性关节炎的辅助治疗药物前景十分光明。D-泛醇又称为维生素原B5,在体内能转化为泛酸,进而合成辅酶A,具有促进蛋白质、脂肪、糖类的代谢,保护皮肤表面和毛发光泽、防止疾病发生的作用,广泛应用于化妆品和个人洗护用品。随着D-泛酸钙和D-泛醇新用途的不断被发掘,预计其国际市场销售有望迅猛增长。该反应中DL-泛内酯浓度20~25%,单次拆解率>30%;单批次反应周期<24 h;固定化酶重复使用不少于50次。
华东理工大学 2021-04-13
酶法拆分生产(S)-萘普生
萘普生是一种传统的非处方消炎、镇痛药物。作为一种手性药物,其(S)-构型化合物的消炎活性是(R)-构型的28倍。对化学法合成的消旋萘普生进行拆分,得到光学纯的(S)-萘普生,可以有效地提高药效,减少毒副作用。 我们采用自行开发的重组酯酶催化消旋萘普生甲酯的立体选择性水解,(S)-萘普生甲酯水解生成相应的(S)-萘普生,未反应的(R)-萘普生甲酯在强碱环境下进行消旋,得到消旋萘普生甲酯,回收后与新鲜底物混合,重新用于拆分反应。 由于萘普生甲酯在水中溶解性差,与酶接触面积小,反应时底物浓度通常比较低,本项目中,我们采用简单的机械破碎的方法,对底物进行粉碎,获得细微的底物颗粒,极大地增加了萘普生甲酯颗粒的表面积,从而有效地提高了纯水相反应介质中萘普生甲酯的酶促反应速率,底物浓度可达到5%,并且反应结束后通过简单过滤即可实现底物与产物的分离,工艺简单。 相关技术已申请中国发明专利,申请号201010114462.8
华东理工大学 2021-04-13
高浓度淀粉酶法液化、糖化技术
在传统淀粉糖的生产过程中,淀粉乳投料浓度通常在 25%~35%之间,淀粉乳经液化、糖化后的酶解液需经过蒸发浓缩等工序,以提高产物浓度,这消耗了大量的水资源与能源,增加了生产成本。本技术针对淀粉在液化、糖化过程中的粘度过大所导致的投料浓度较低等行业难题,通过生物酶法和物理场预处理,可将淀粉乳的初始浓度提高至 40%以上,减少淀粉乳的初始水分含量,制备高浓度淀粉糖产品。该项技术应用于玉米淀粉液化、糖化过程中,具有降低能耗、节约用水、提高产量、提高单位设备利用率、缩短生产周期、降低生产成本等特点,有着巨大的应用价值。
江南大学 2021-04-11
一种基于乳腺数字影像融合技术的个性化乳房假体制作方法
本发明公开了一种基于乳腺数字影像融合技术的个性化乳房假体制作方法,该制作方法包括以下步骤:获取影像数据→乳房三维激光扫描+胸部CT扫描→分别进行三维激光扫描数据及胸部CT数据的三维建模→进行两种数字影像的融合→获得融合的乳房三维数字模型→3D打印。该基于乳腺数字影像融合技术的个性化乳房假体制作方法,通过乳房三维扫描和CT的复合影像融合,能够获得站立位的有着内部结构的乳房三维数字模型。并通过3D打印技术打印出个性化的乳房假体,对于得到更好的手术效果,有着很大的作用。解决了既往传统影像学方法不能同时得到站立位的具有清晰乳房内部的结构,而只能通过软件来进行弥补的问题。
青岛大学 2021-04-13
羊草水孔蛋白及其编码基因与应用
羊草水孔蛋白及其编码基因与应用,目前对于羊草的研究仅限于人畜的食用及成份分析等方面,而将其作为耐旱植物对其分子生物学方面的研究还少见报道.羊草水孔蛋白,是具有以下氨基酸序列的蛋白质:(1)序列表中的SEQ IDNo:1;(2)序列表中SEQ ID No:1的氨基酸序列经过一个或几个氨基酸残基的取代,缺失或添加,且与SEQ ID No:1蛋白质序列具有相同活性的,由SEQ IDNo:1衍生的蛋白质.将本发明的水孔蛋白的编码基因转入其它植物,可增强转基因植物的抗旱能力.本发明应用于植物基因工程领域.
哈尔滨师范大学 2021-05-04
新型冠状病毒的基因组序列
2020年2月4日上海复旦大学公共卫生学院张永振团队在《自然》杂志发表了与中国呼吸道疾病爆发相关的病毒的基因组序列,该病毒基因组从就职于出现首批患者的海鲜市场的一名病人身上获得。基因组分析显示,该病毒与此前在中国蝙蝠体内找到的一组SARS样冠状病毒密切相关。 张永振及同事研究了一名41岁的男性海鲜市场工人,其于2019年12月26日在武汉一家医院住院,表现出呼吸系统疾病症状,包括发烧、胸闷和咳嗽。联合使用抗生素、抗病毒药和糖皮质激素进行治疗,但患者表现出呼吸衰竭,治疗三天后病情无改善。团队对从患者收集的支气管肺泡灌洗液(肺分泌物)进行了基因组测序。他们鉴定出了一种新型病毒,并发现该病毒基因组与蝙蝠体内发现的SARS样冠状病毒有89.1%的核苷酸相似性。尽管从单个患者的分析中不可能得出该冠状病毒是当前疫情爆发原因的结论,不过团队的这些发现已被针对其他患者的独立调查研究证实。 
复旦大学 2021-04-10
便携式病原体基因检测技术
本技术成果通过整合电化学、微机电和自动化控制技术,开发了一套适合于 出入境口岸动物疫病等的现场快速检测设备 便携式动物疫病现场检测仪。检 测仪在结构上不同于现有的进口浊度仪,采用自主开发的微机电加热技术保证疫 病基因的高效等温扩增,同时集成可视化微型紫外检测模块使得结果的观察和判 断更为方便。该仪器具备稳定的温度控制电路、便捷的结果检测方式,体积小方 便携带,且具有自主知识产权,避免了使用价格昂贵,且不便携带的实时浊度仪、 PCR仪或水浴锅,适合于出入境口岸对动物疫病等进行现场的快速诊断或筛查。实验样机采用链置换聚合酶引导下的环介导等温扩增反应生成大量焦磷酸 镁沉淀和DNA产物的原理,包括四路并行的单色激光器和二极管阵列光电检测 器,实现对样本中的生物基因(DNA)进行实时检测和分析。同时,利用磁珠 法提取核酸的基本理论,研制了手持式核酸提取装置,对细胞中的核酸(DNA 和RNA)完成纯化和提取,完成的样本前处理工作,整个过程不需要离心机,单 个提取时间不超过30分钟。从样本前处理到后续的基因检测,完成单个样本检 测的平均时间不超过60分钟,可以实现对食品、农产品、肉制品、水产品中各类 病原微生物的快速检测和现场查验。
重庆大学 2021-04-11
水稻侧根控制基因OsIAA11及其应用
本发明公开了一种水稻侧根控制基因OsIAA11编码的蛋白质,其具有SEQ?ID?NO:2所示的氨基酸序列。本发明还同时公开了编码上述蛋白质的基因,该基因具有SEQ?ID?NO:1所示的核苷酸序列。本发明的基因能用于构建具有水稻侧根控制功能的转基因水稻。由于侧根的正常发生发育对维持水稻生长发育以及高产稳产是必不可少的,而且该基因仅影响侧根发生发育,因此在分子育种中存在较大的应用潜力。
浙江大学 2021-04-11
发现放射性脑损伤易感基因
通过对个体全基因组单核苷酸多态性(SNP)信息与疾病表型的全基因组关联分析,以及两阶段独立人群验证,最终在2942例鼻咽癌患者中发现了位于14号染色体上CEP128 基因启动子区的变异位点rs17111237与放射性脑损伤的发生存在显著关联,携带危险型等位基因的个体CEP128基因的表达水平显著较低。特别地,联合临床危险因素,携带危险基因型的高危鼻咽癌患者放射性脑损伤五年发病风险为携带保护基因型的低危患者的3倍。CEP128基因编码中心体蛋白,在纤毛形成和细胞周期调控中起着至关重要的作用。研究表明,CEP128可通过与CASK、CEP72等蛋白相互作用,维持纤毛的功能并调节细胞对射线等外界刺激的反应。我们进一步以放射性脑损伤的主要靶细胞——神经胶质细胞为模型探究了CEP128基因的功能,通过克隆形成实验发现敲减CEP128基因的表达显著增加了神经胶质细胞的放射敏感性。
中山大学 2021-04-13
多功能基因编辑纳米载体研究进展
开发了一种还原敏感的多功能载体材料,载体的疏水性嵌段包载抗肿瘤光动力药物Ce6,携带NTA基团的嵌段则通过NTA和Cas9蛋白末端His标签之间的特异性结合高效负载Cas9蛋白/sgRNA复合物,然后通过静电组装在外层引入靶向肿瘤组织的iRGD分子。这样的载体结构设计和药物联合输送为实现肿瘤组织特异性的基因编辑和联合治疗提供了可行性。纳米药物靶向输送至肿瘤细胞后,在近红外光的辐照下,Ce6产生的活性氧使溶酶体破裂,使纳米药物从溶酶体中逃逸出来,NTA和载体聚合物之间的二硫键可响应胞质内的谷胱甘肽等还原剂而断裂,从而将Cas9蛋白/sgRNA复合物从载体上释放出来,执行基因编辑功能。在正常的组织中,由于没有近红外光的辐照,Cas9蛋白/sgRNA复合物难以从溶酶体中逃逸,无法执行基因编辑的功能。通过红外光辐照和还原敏感设计实现了肿瘤组织特异的基因编辑。此外,肿瘤细胞在受到Ce6所生成活性氧攻击时,会上调Nrf2(一种活性氧代谢的关键蛋白)的表达,提高肿瘤细胞对活性氧的耐受性。使用靶向Nrf2基因的sgRNA,可以通过联合输送的Cas9蛋白/sgRNA复合物使Nrf2基因失活,提高肿瘤细胞对活性氧的敏感性。总而言之,通过多功能载体联合输送Ce6和Cas9蛋白/sgRNA复合物,一方面实现了肿瘤特异性的基因编辑,另一方面也实现了基因编辑和光动力治疗的联合治疗,协同提高了基因编辑的特异性和治疗效果,为基因编辑技术的发展提供了一个新的方向。
中山大学 2021-04-13
首页 上一页 1 2
  • ...
  • 22 23 24
  • ...
  • 57 58 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1