高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
高密度低合金粉末冶金结构件制备新技术与应用
本技术基于粉体流变塑变特性和改性原理,创立了一条通过优化粉体粒度组成、改善粉体塑性变形能力,采用一般成形与烧结设备制备高密度低合金粉末冶金结构件的新途径。其主要工艺流程为:首先根据水雾化铁粉颗粒的形状和粒度特征,按比例进行合批,添加母合金粉末和增塑剂(Polylub)混合后,在还原炉(温度760-820℃)中进行塑化处理,再添加专用润滑剂(C38H76N202)及石墨,获得具有良好压缩性和成形性的混合粉末;混合粉末在室温状态下,经模压成型,高温烧结后得到高密度粉末冶金结构件。与传统工艺相比,该新工艺具有以下特点和创新点:①以国产水雾化铁粉为主要原料,通过综合利用优化粉末粒度组成、添加母合金粉、增塑剂进行塑化处理,再添加石墨和润滑剂等制备高密度低合金成型粉末,显著提高了原料粉末的压缩性和成形性,为生产高密度粉末冶金结构件提供了原料保障;②针对产品结构和形状特点,改造设计了三上三下专用模架及自动送料系统,实现自动移粉,采用模壁润滑技术,有效控制了产品成分和密度的均匀性,生产效率提高1倍;③可以采用传统压机和烧结设备,所需新增投资少,制造成本低;④与原机械加工的结构件相比,具有尺寸重复性好、运行噪音低、耐磨性好、使用寿命长等特点,生产成本较机加工工艺降低47%以上,较国外温压成形工艺降低60%以上。相关产品已申请国家专利20多项,其中5项授权为国家发明专利,10项授权为国家实用新型专利。
北京科技大学 2021-04-11
《“十四五”国家高新技术产业开发区发展规划》解读
11月9日,科技部公布《“十四五”国家高新技术产业开发区发展规划》(以下简称《规划》),进一步明确了“十四五”国家高新区的发展思路和重点任务。
中国高新技术产业导报 2022-11-24
一种基于单分子器件平台的单分子电学检测新方法和新技术
利用硅基单分子器件研究了分子马达水解的动力学过程,发现了无标记的电学检测方法观察到的分子马达的转动速度要比荧光标记的方法快一个数量级(ACS Nano 2018, 11, 12789)以苯环为骨架、芴基为核心的共轭分子,并在末端修饰上氨基,通过稳定的酰胺键将带有羰基官能团的功能分子连接在石墨烯电极之间,通过使用自主搭建的高速电学测试平台对化学反应进行了实时监测。大的共轭结构以及酰胺共价键的强耦合保证了分子具有良好的导电性;在化学反应进行的过程中,分子结构的变化将导致分子轨道发生改变,从而影响导电通道,影响器件的电导特性。
北京大学 2021-04-11
一种基于单分子器件平台的单分子电学检测新方法和新技术
研制了国际首例稳定可逆的单分子光开关器件( Science ,  2016 ,  352 , 1443;  J. Phys. Chem. Lett. ,  2017 ,  8 , 2849);观察到了低温下联苯基团由于σ单键的旋转产生的精细立体电子效应( Nano Lett. ,  2017 ,  17 , 856);研究了分子间主客体相互作用的动力学过程( Sci. Adv .,  2016 ,  2 , e1601113),揭示了羰基和羟胺反应形成酮肟的分子机制( Sci. Adv. ,  2018 ,  4 , eaar2177),证实了利用单分子电学检测方法研究单分子反应动力学的可行性,为实现单分子化学反应的可视化研究迈出了重要的一步。他们利用硅基单分子器件实现了具有单碱基对分辨率的DNA杂交/脱杂交动力学过程的研究( Angew. Chem. Int. Ed. ,  2016 ,  55 , 9036);在单分子水平上揭示了分子马达水解的动力学过程( ACS Nano , 2018 ,  11 , 12789),展现了单分子器件在单分子生物物理研究方面的可靠性。
北京大学 2021-04-11
关于组织开展青海省2023年度高新技术企业认定申报工作的通知
 为持续做好我省高新技术企业认定申报工作,根据科技部、财政部、国家税务总局印发的《高新技术企业认定管理办法》(国科发火〔2016〕32号)(简称《认定办法》)、《高新技术企业认定管理工作指引》(国科发火〔2016〕195号)(简称《工作指引》)规定,现将开展青海省2023年度高新技术企业认定申报工作有关事项通知。
青海省科学技术厅 2023-06-13
利用油脂脱臭馏出物生产生物柴油、植物甾醇和维生素E新技术
中试阶段/n针对酶在工程化应用中的缺陷,如易失活、不具回收性、抗逆性差 等,采用新型固定化技术,制备出具有高活性、高耐逆和工程化回用性 良好的固定化脂肪酶,提高酶活力 10-46 倍。如:以碳纳米管为载体整 合其它方法固定化 BCL,固定化酶最大蛋白比活达 50,200 U/min/g protein,酶活回收率达 3,740%,为游离酶的 54 倍,是 MPR-NKA 固定化 酶的 1.5 倍,且大幅缩短了酶促反应时间,10 分钟就能使手性拆分反应 达到平衡,较国际报道的最高水平提高 200 倍,
华中科技大学 2021-01-12
基于绿色功能介质的天然海洋多糖高分子分离及高值化利用清洁新技术
本成果基于廉价易得的功能型离子液体、低共熔溶剂,可从海洋废弃生物质(比如虾蟹壳,海藻,海带等)中高选择性制备甲壳素、壳聚糖、海藻酸等天然多糖高分子化合物,进而实现相应化合物的结构性能提升(如抗菌等)或者转化为高附加值衍生产品(如医药用品或者药物载体等)。该新技术有望解决传统酸碱制备方法中水耗高、污染大等问题,具备水耗低、污染少、能耗低、流程少等潜在优点。此外,新技术具有良好的拓展性和灵活性,可从虾蟹壳直接制备甲壳素敷料、绷带等医疗用品。 主要技术特点如下: (1)处理的原料来源于当地的虾蟹壳,海带/海藻等,无需特别分级处理。 (2)所得甲壳素收率大于90%,纯度大于95%,聚合度可调,介于400——4000。 (3)所得壳聚糖收率大于90%,纯度大于95%,脱乙酰度值大于85%,符合国家标准GB 29941-2013。 (4)所得海藻酸收率大于90%,纯度大于95%。 (5)可制备得海藻酸基功能材料(膜、纤维、水凝胶、气凝胶等),具备自愈合、阻燃等特点。
北京理工大学 2023-05-09
基于绿色功能介质的天然海洋多糖高分子分离及高值化利用清洁新技术
本成果基于廉价易得的功能型离子液体、低共熔溶剂,可从海洋废弃生物质(比如虾蟹壳,海藻,海带等)中高选择性制备甲壳素、壳聚糖、海藻酸等天然多糖高分子化合物,进而实现相应化合物的结构性能提升(如抗菌等)或者转化为高附加值衍生产品(如医药用品或者药物载体等)。该新技术有望解决传统酸碱制备方法中水耗高、污染大等问题,具备水耗低、污染少、能耗低、流程少等潜在优点。此外,新技术具有良好的拓展性和灵活性,可从虾蟹壳直接制备甲壳素敷料、绷带等医疗用品。 主要技术特点如下: (1)处理的原料来源于当地的虾蟹壳,海带/海藻等,无需特别分级处理。 (2)所得甲壳素收率大于90%,纯度大于95%,聚合度可调,介于400~4000。 (3)所得壳聚糖收率大于90%,纯度大于95%,脱乙酰度值大于85%,符合国家标准GB 29941-2013。 (4)所得海藻酸收率大于90%,纯度大于95%。 (5)可制备得海藻酸基功能材料(膜、纤维、水凝胶、气凝胶等),具备自愈合、阻燃等特点。
北京理工大学 2022-04-08
建立胎儿结构异常超声筛查策略、转诊体系和超声诊断新技术指标的研究
本项目属于医药卫生领域应用技术类研究成果,主要研究胎儿结构异常超声筛查策略、转诊体系以及超声诊断新技术指标。设计多中心前瞻性队列研究,依据四川省人口出生特点及四川省卫生厅备案具备产前诊断资质的医疗机构情况,纳入四川省内6个省、市级产前诊断机构(四川大学华西第二医院、四川省妇幼保健院、成都市妇幼保健院、宜宾市第二人民医院、攀枝花市妇幼保健院、德阳市人民医院)产前检查孕妇人群,以初步建立地域为特点的胎儿结构异常超声筛查策略、转诊体系。深入探讨超声诊断新技术指标,包括建立四川省胎儿超声软指标参考值范围,为临床科学决策提供数据依据;初步建立早孕期超声筛查技术规范;对相关高危人群进行胎儿针对性检查,初步建立针对性胎儿超声心动图检查技术规范及针对性胎儿神经系统超声检查技术规范,合理应用医疗资源,提高全省产前超声医师诊断技能;建立超声监测胎儿心功能评价宫内治疗胎儿心律失常的方法,探讨超声引导胎儿脐静脉穿刺技术应用。
四川大学 2016-04-22
一种电纺纳米纤维复合物修饰丝网印刷电极的制备方法
本发明公开一种电纺纳米纤维复合物修饰丝网印刷电极的制备方法,包括下述步骤:(1)静电纺丝法制备电纺纳米纤维膜聚酰胺6?石墨烯PA6?GR;(2)将PA6?GR剪碎后与石墨烯、壳聚糖混合于有机溶剂中并搅拌至糊状,制得电纺纳米纤维复合物PA6?GR/GR?CTS;(3)将PA6?GR/GR?CTS滴涂于丝网印刷电极表面,烘干,得到电纺纳米纤维复合物修饰丝网印刷电极。制得的电纺纳米纤维复合物修饰电极具备稳定性好、比表面积大、电子传递速率快等优良特性,且制备简单、牢固,可长期保存。该修饰电极协同了一次性可抛电极、电纺纳米纤维复合物的双重优势,给印刷电极的修饰与功能化提供了全新的案例,在电学生物传感检测方面具有广阔的应用前景。
东南大学 2021-04-11
首页 上一页 1 2
  • ...
  • 21 22 23
  • ...
  • 664 665 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1