高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
具高d33无铅压电陶瓷-聚合物压电复合材料的制备方法
本发明涉及一种具有高d33的无铅压电陶瓷-聚合物压电复合材料的制备方法。该方法按式(1-x)(LiaNabK1-a-b)(Nb1-cSbc)O3-xABO3-yM组分配料,采用传统陶瓷制备方法制备铌酸钠钾基无铅压电陶瓷粉料;再将陶瓷粉料与聚合物聚偏氟乙烯按比例混合球磨;烘干后超声震荡,将混合粉料经冷压成型后加温处理,再在其表面溅射金电极,硅油浴中极化后测试其压电复合材料样品的压电性能d33;最后将样品置入去离子水或盐溶液中浸泡,再测试其样品的压电性能d33。结果表明,经浸泡处理的铌酸钠钾基无铅压电陶瓷-聚合物压电复合材料的d33比未经浸泡过的有大幅度提高,提高比例甚至可达300%。
四川大学 2021-04-11
MD-711TS高智能电缆故障测试仪
产品详细介绍 MD-711TS高智能电缆故障测试仪是迎合工业级电力行业方案和IT时代的快速发展,将原来电缆故障测试仪的局限性,用工控嵌入式计算机平台系统、网络服务业务、USB通信技术系统化,极大提高了仪器的使用功能和利用价值以及便捷的现场环境操作。特别对于日益增多的地埋电缆资料提供了一套独有的管理软件。整套系统满足中华人民共和国电力行业标准《DL/T849.1~ DL/T849.3-2004》电力设备专用测试仪器通用技术条件,该系统测试由系统主机和故障定位仪以及电缆路径仪三部分组成,用于电力电缆各类故障的测试,电缆路径、电缆埋设深度的寻测和电缆档案资料的日常维护管理,以及铁路、机场信号控制电缆、和路灯电缆故障的精确测试。◆ 国内首家采用工控嵌入式计算机平台系统,工业级使用环境,实现极强稳定性。锂电供电、方便现场测试。◆ 国内首家采用12.1英寸大屏幕系统,全电脑XP操作平台集成化软件,彻底告别电缆仪单片机时代,并配有电缆故障测试软件和电缆资料管理软件。◆ 采用最新的USB通信接口,采集信号稳定,配一款笔记本电脑可实现双控双显,主机可自动选择最低6.25MHz、最高达100MHz五种采样频率,能满足不同长度电缆的测试要求,减少了粗测误差。◆ 软件实现故障自动搜索,距离自动显示,双游标移动可精确到0.15米,波形可任意压缩、扩展,同屏随机显示两个更接近标准的波形供你准确比较分析,提高测试精度,减少误差。◆ 支持最新开通的3G通信终端或无线上网卡,专用3G软件可实现专家远程现场实时测试技术服务,专家远程操控用户主机,给用户现场测试提供及时、准确波形分析和交流指导,使您无忧工作。◆ 4G内存多类现场波形和现场实物接线图,轻轻一点即可使用,电缆资料管理软件可做完善的电缆档案管理,为电缆的维护工作和精确定位提供参考和帮助。◆ 关键的精确定点仪部分,直接数字显示测试者离故障点距离,是国内同类定点技术的又一次创新,为快速准确查找电缆故障,减少停电损失提供了有力保障。◆ 最新研制智能组合式采样器,取代了烦琐的现场接线,具有波形直观,容易分析,与高压完全隔离,对主机、操作人员绝对安全的特点。一、测试仪技术指标:1、可测试各种不同电压等级、不同截面、不同介质及各种材质的电力电缆的各类故障,包括:开路、短路、低阻、高阻泄漏、高阻闪络性故障。2、可测试铁路通信控制电缆、路灯电缆、机场信号电缆的各类故障。3、可测量长度已知的任何电缆中电波传播的速度。4、可测试电缆走向及埋设深度。测试距离:不小于40km 最短测试距离(盲区):5-10米精确定点误差:±0.2m 测试误差:系统误差小于±1%分辨率:V/50m;V为传波速度m/μs;软件游标0.15米。  仪器采样频率:6.25MHz、10MHz、25MHz、50MHz、100MHz、(自适应脉宽)电源与功耗: AC 220V±10%  15W  DC 12V(7AH) 不大于20W待机时间:可连续使用4小时左右。管 理:电缆埋设路径分布示意图。用户管理区域内所有电缆的资料的详细档案:包括电缆分布图、编号、起始位置、埋设深度及时间、电缆介质、接头位置、维修记录、故障产生原因、试验报告、电缆测试记录等信息。二、路径仪技术指标1﹑输出信号频率:15 KHz 2﹑输出最大出功率:<1W3﹑体积48×76×170mm34﹑重量0.5Kg选配设备:DSG-Ⅱ(Ⅲ)一体化交直流高压发生器,高压组件(包括3KVA 交直流高压发生器、控制箱和2UF/30KV脉冲电容各一台)
西安广昕丰泽电子科技有限公司 2021-08-23
高d33无铅压电陶瓷-聚合物-盐压电复合材料及其制备方法
本发明涉及一种具有高d33无铅压电陶瓷与聚合物和盐压电复合材料及其制备方法,属于压电复合材料技术领域。按(1-x)(LiaNabK1-a-b)(Nb1-cSbc)O3-xABO3-yM组分配料,采用传统陶瓷制备工艺制备好铌酸钠钾基无铅压电陶瓷粉料;再将陶瓷粉料与聚合物聚偏氟乙烯和盐按设计比例混合,接着将混合粉料经冷压成型后加温处理,再在其表面溅射金电极,硅油浴中极化后测试其压电复合材料样品的压电性能d33;最后将样品放置在空气中,再测试其样品压电性能d33。结果表明,加盐的铌酸钠钾基无铅压电陶瓷-聚合物压电复合材料的d33比未加盐的d33有大幅度提高。
四川大学 2021-04-11
双斜盘液压电机柱塞泵
本发明涉及一种双斜盘液压电机柱塞泵,包括外壳、定子、转子、缸体、多个柱塞、两斜盘组件和配流装置,其中缸体左右两侧各设置有多个与柱塞腔相通的吸排油口,配流装置与缸体间隙配合,在转子主轴带动缸体的转动中,斜盘组件使柱塞在柱塞腔中作往复直线运动,配流装置与缸体的吸排油口周期性的连通,实现电机柱塞泵的配流,配流装置不随主轴而转动,所述配流装置为配流轴。本发明采用的配流装置有效简化了泵整体结构,减少了泵的闭死容积,提高了电机柱塞泵的容积效率,与现有的阀配流柱塞泵相比,使得泵腔体内工作介质出入口处过流量不再受到
华中科技大学 2021-01-12
高压电场联合热风干燥装置
【发 明 人】段金廒、鲁学军、钱大玮、郭盛【技术领域】本实用新型涉及一种干燥加工生产设备,特别是涉及一种适用于中药材、药品、农产品、食品及生物制品等领域的含热不稳定性活性组分物料干燥的高压电场联合热风干燥装置。【摘要】本实用新型公开了一种高压电场联合热风干燥装置,它包括箱体,安装在箱体上的高压电场干燥系统、热风循环干燥系统和监测控制系统。本实用新型提供的高压电场联合热风干燥装置,结构设计合理,可操作性强,使用方便,与传统热风干燥相比,具有干燥效率高,干燥温度低,所需干燥时间比同温度下单纯热风干燥,可缩短50%,干燥能耗可降低51.9%,特别适用于含热不稳定性活性组分物料的干燥,如中药材及饮片、药品、农产品、食品及生物制品等物料的干燥,干燥后外观质量好、活性成分保留度高,应用范围非常广泛。
南京中医药大学 2021-04-13
精密可调高压电源技术
1、成果简介 可以研发:精密可调高压电源等。 技术指标:1、电压等级:10KV-220KV;稳定度:1×10-62、应用说明 主要应用对象:电子显微镜、X射线仪、电子束焊接等领域。3、效益分析 高技术产品
北京航空航天大学 2021-04-13
氮化镓高压电力电子器件
已有样品/n基于AlGaN/GaN异质结材料体系,通过采用导电机制融合和能带分区调控的先进技术路线改变传统氮化镓肖特基二极管正向电压与反向电流等参数之间的经典调控规律,采用无损伤工艺,提升了器件的均匀性和可靠性,进一步提升了氮化镓肖特基二极管的性能。测试结果达到1700V反向耐压,正向开启电压达到0.38V以及高防浪涌能力,为肖特基二极管器件市场提供了一种新选择。
中国科学院大学 2021-01-12
PZT-82 127×86.36×2.2压电陶瓷条
淄博宇海电子陶瓷有限公司 2021-08-30
PZT-82 Φ50×Φ17×5压电陶瓷环
淄博宇海电子陶瓷有限公司 2021-08-30
封装型压电陶瓷致动器(博实)
产品详细介绍封装型压电陶瓷优点:   方便安装固定:移动端方便与外部结构连接,移动端有四种选择:内螺纹、外螺纹、球头和平头。    保护陶瓷:因为陶瓷是易损元件,外力的夹持或者撞击都可能导致压电陶瓷的损坏,机械封装式压电陶瓷的机械外封可以对内部的叠堆压电陶瓷起到很好的保护作用。    提高功率:通常情况下,压电陶瓷都需在它的功率范围内使用,因为陶瓷在高频振动的过程中会产生一定的热量,陶瓷的温度会随之升高,超过温度80℃,陶瓷则可能会因为热量不能及时散出而损坏,但如果选择散热好的机械外封材料,并可以通过在陶瓷外部加散热片的方式,使陶瓷的使用功率大大提高。    可承受轴向拉力:叠堆陶瓷不能够承受轴向拉力,而机械封装式压电陶瓷由于内部加有预载力,可以承受一定的拉力,适合于高频振动使用,或者需要推拉力的应用。   稳定性高:因为叠堆陶瓷既不能承受侧向力也不能承受弯曲力,所以在使用的过程中,要求受力的接触面足够的平整,且受力方向在陶瓷的中心。当压电陶瓷的长与直径比值过大时,机械封装式压电陶瓷稳定性高于叠堆型压电陶瓷,可以有效的减少侧向力的产生,特别是使用球头连接方式可以消除轴向耦合,大大提高陶瓷的稳定性和使用寿命。    抗干扰:封装陶瓷的外壳是无磁不锈钢材料,可以防止外界电场的干扰。 
哈尔滨工业大学博实精密测控有限责任公司 2021-08-23
首页 上一页 1 2
  • ...
  • 11 12 13
  • ...
  • 20 21 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1