高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
广东罗茨鼓风机压送型LG-350
产品详细介绍罗茨鼓风机压送型LG-350 特点:一、轴承寿命延长由于叶轮传动的震动减少,得以延长轴承命运20%。二、较低的噪音罗茨风机能有效的降低噪音达5dB。三、较低的能源损耗罗茨风机的三叶式设计能减少逆流对转子的压力,相对地也减少了能源的损耗。罗茨风机的配件有入口消音器、马达、逆止阀、安全阀、出口消音器和防震接头。   罗茨风机压送型叶轮采用最先进之一次加工法,以减少认为误差,提升叶轮之精密度,并提高鼓风机之效率。    免润滑油无故障:在转子与转子间,及转子与壳体间,设有适当间隙,在运转中互不接触,内部不需润滑处理、机械部分之接触,采正时齿轮齿合模式、且壳体(转子动作室)以侧盖汽油分离,不致有润滑油混入之虞,故吐出只气体为不含油成分之清净空气,即使在长期运转情况下,亦可安心使用。   高度标准化之组件、品质保证,所有零件均经CNC自动化工作母机加工,规格均一致化,即使因不当使用所导致之损害,亦能轻而易举的更换新旧零件,节省维修时间、与工时费用、零件特价供应不虞维护之困扰、训练有素之外勤服务人员,让客户得到最佳之售后服务。   罗茨风机—压送型低噪音、低震动:在噪音及振动之防治方面,本公司经多年加以研究,此一系列新机种乃采高精密度转子结构,以遂行理想之逆流压缩功能。罗茨风机—压送型鼓风机吐出空气之脉动,可更平滑的进行,噪音及振动均可大幅度减低,因此,就小型鼓风机而言,可免加装出口消音器    狮歌品牌融合并传承了欧洲百年风机工程师的结晶,承袭德国高品质制造工艺,配备德系顶尖精密设备,具备强劲、高效、耐用、安全、节能等优秀血统。    在全球,我们服务于法国蒙得利斯造船公司,俄罗斯彼得机械制造厂,美国GB集团,韩国大丘社、日本联合株式会社等。    今天,狮歌在全球建立了上百个办事处,30000家核心售后点,组建了5000人的销售团队。    狮歌,正在以前瞻性标准融汇当代真空流体科技,带来更高效生产动力,更流畅的操作感受,更安全稳定的运转,从而赢在起点。
首普国际机电有限公司东莞销售部 2021-08-23
可调式直流温压稳流电源-指针式(1)
产品详细介绍  特点  ■单路输出  ■双指针表分别指示输出电压和输出电流值  ■稳压稳流状态自动转换,并由发光管指示  ■采用电流限制保护方式,限流点任意调节  ■全塑面框,外型精致实用   ■纹波与躁音:CV≤1mvrms CC≤5mAms  ■电源效应: CV≤1×10-4+0.5mv CC≤2×10-3+1mA  ■负载效应: CV≤1×10-4+2mv CC≤2×10-3+3mA   ■体积与重量: 285×155×133  
乐清苹果仪器有限公司 2021-08-23
压差法气体渗透仪(气体透过率测试仪)
产品详细介绍压差法气体渗透仪适用于塑料薄膜、复合膜、高阻隔材料、片材、金属箔片、橡胶、渗透膜等材料在各种温度下的气体透过率、溶解度系数、扩散系数、渗透系数的测定。压差法气体渗透仪符合GB 1038、ASTM D1434、ISO 2556、ISO 15105-2等多种标准。压差法气体渗透仪(VAC-V2)具有以下特点:测定试验气体透过率、溶解度、扩散与渗透系数;三腔独立测试,恒温控制,可选湿度控制;任意温度下的数据拟合功能;可扩展有毒、易爆等危险气体的试验;压差法气体渗透仪测试原理:将预先处理好的试样放置在上下测试腔之间,夹紧,首先对低压腔(下腔)进行真空处理,然后对整个系统抽真空,当达到规定的真空度后,关闭测试下腔,向高压腔(上腔)充入一定压力的试验气体,并保证在试样两侧形成一个恒定的压差(可调),这样气体会在压差梯度的作用下,由高压侧向低压侧渗透,通过对低压侧内压强的监测处理,从而得出所测试样的各项阻隔性参数。压差法气体渗透仪技术指标:测试范围: 0.05 ~ 50,000 cm3/m2·24h·0.1MPa(常规)                      上限不小于500,000 cm3/m2·24h·0.1MPa(扩展体积)                      注:常规和扩展体积通过体积填块来选择 控温范围:5℃~95℃控温精度:±0.1℃ 控湿范围:0%RH、2%RH~98.5%、100%RH(湿度发生装置另购)控湿精度:±1%RH真空精度:0.1Pa 测试腔真空度:<20Pa试样尺寸:Φ97mm试样数量:3 件(数据各自独立)透过面积:38.48cm2试验气体:O2、N2、CO2 等气体(气源用户自备)了解详情请致电:济南兰光0531-85068566 Labthink兰光产品:1. 透氧仪 2. 气体透过率测定仪 3. 透气性测试仪 4. 透湿仪 5. 透湿性测试仪 6. 密封试验仪 7. 落镖冲击试验仪 8. 密封仪 9. 泄漏与密封强度测试仪 10. 氧气透过率测试仪 11. 热封仪 12. 氧气透过率测定仪 13. 水蒸气透过率测定仪 14. 薄膜拉力机 15. 摩擦系数仪 16. 初粘性测试仪 17. 智能电子拉力试验机 18. 撕裂度仪 19. 热缩试验仪 20. 电子剥离试验机 21. 揉搓试验仪 22. 瓶盖扭矩仪 23. 顶空分析仪 24. 磨擦试验机 25. 热封试验仪 26. 摆锤冲击试验仪 27. 墨层结合牢度试验机 28. 持粘性测试仪 29. 薄膜测厚仪 30. 雾化测试仪 31. 摩擦系数测试仪 32. 纸箱抗压试验机 33. 气相色谱仪 34. 摩擦系数测定仪 35. 透气度测试仪 36. 测厚仪 37. 摩擦系数试验仪
济南兰光机电技术有限公司 2021-08-23
快速响应的水凝胶薄膜光学传感技术
项目简介: 本技术是利用智能水凝胶的刺激响应性,结合 Fabry-Perot 薄膜 干涉现象提出的新型光学传感方法。本技术使用的水凝胶薄膜厚度仅 数微米,因此具有响应速度快速的特点。可检测的项目包括温度、pHIntensity Wavelength 值、葡萄糖等。可与光纤传感技术相结合,实现远程传感。
南开大学 2021-04-11
水-空交替控时淬火冷却工艺及装备
上海交通大学 2021-04-11
超临界水氧化技术处理含酚废水
高校科技成果尽在科转云
西安交通大学 2021-04-10
无膜分步法电解水制氢
传统的电解工业(电解水、氯碱工业)阴、阳极会同时产生两种气体,一般采用离子交换膜防止两种气体的混合,避免爆炸性混合气体的产生。离子交换膜的使用增加了电解的成本,此外膜内阻也增加了电解的能耗。且由于阳极和阴极室的气体压力必须通过稳定的电源输入保持平衡,很难利用风能和太阳能等不稳定的可持续能源来直接为离子膜电解池供电。另一方面,电解池中的高压气体和阳极氧化过程的中间产物也会加剧膜的老化降解,近一步增加电解成本。基于电池电极的分步法无膜电解技术有望为电池电极反应推出一个新的研究方向,随着电池工业迅速发展,电池电极的制备已经非常成熟,分步法电解技术很容易利用现有的商业化电极实现产业化。
复旦大学 2021-04-10
水相中安息香酮的合成方法
水相中安息香酮的合成方法,涉及一种化合物的合成方法,本发明步骤是先将卡宾催化剂N-烷基苯并咪唑溴盐和水加入反应容器中常温搅拌,再加入苯甲醛,加热搅拌,最后在空气中加热至回流得安息香酮.本发明以卡宾催化剂N-烷基苯并咪唑溴盐为原料,无毒,对环境无害,是一种环境友好的催化剂.本发明方法中采取的溶剂是水,水是一种来源广泛,成本较低且对环境无害的溶剂,同时安息香酮的产率较高.可不需要加入任何氧化剂,只要将反应体系暴露在空气中搅拌,空气中的氧气即可起到氧化剂的作用.该反应通过空气氧化苯偶姻得到安息香酮,空气来源广泛,几乎没有成本,这大大降低合成成本.
扬州大学 2021-05-07
面向省级电网的水调高级应用软件
该项目以云南电网电力调度中心统调的二十七个大中型水火电站经济运行为背景,采用 J2EE/Orancle 9i 平台进行软件开发,利用 EJB 构建系统模型和组件,运行于 WEB 环境。主要包括中长期径流预报、中长期水火电联合补偿调度、短期水火电联合补偿经济运行三大功能模块,用于电网年、月、旬、周运行计划的制定,以 15 分钟为计算单元的日经济实时运行。该软件主要特点是运行于 WEB 环境,通过 EJB 组件保障了系统高可靠性和稳定性;另外,也非常便于开发阶段用户与开发者之间沟通,从而了增加了软件实用性并节约了开发成本。
大连理工大学 2021-04-13
超亲水高阻燃高档涤纶面料改性技术
涤纶因其出色的性能,是应用最为广泛的纺织面料。在服装、汽车内饰面料和室内装饰面料上应用最 多。但涤纶不亲水,服用不舒适,有闷热感;同时,作为重要的室内装饰面料和汽车内饰面料,易染而产生 的火灾是造成财产、生命损失的重要因素。。超亲水高阻燃涤纶改性技术,可以同时赋予涤纶织物超亲水性、 阻燃性。经改性的涤纶织物是超亲水织物,水滴接触角降为0。同时,涤纶织物具有良好的阻燃性,水平燃 烧测试,基本不燃;垂直点燃,在火源离开后,迅速熄灭;极限氧指数达到30 - 31% ,是难燃织物。该处理工艺流程短,投资彳氐,成本合理。改性涤纶织物具有耐久性,不因存放和洗涤而丧失功能。
西南大学 2021-04-13
首页 上一页 1 2
  • ...
  • 24 25 26
  • ...
  • 51 52 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1